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Prediction errors (PEs) are a keystone for computational neuroscience. Their association with midbrain neural firing has been
confirmed across species and has inspired the construction of artificial intelligence that can outperform humans. However, there is
still much to learn. Here, we leverage the wealth of human PE data acquired in the functional neuroimaging setting in service of a
deeper understanding, using an MKDA (multi-level kernel-based density) meta-analysis. Studies were identified with Google
Scholar, and we included studies with healthy adult participants that reported activation coordinates corresponding to PEs
published between 1999–2018. Across 264 PE studies that have focused on reward, punishment, action, cognition, and perception,
consistent with domain-general theoretical models of prediction error we found midbrain PE signals during cognitive and reward
learning tasks, and an insula PE signal for perceptual, social, cognitive, and reward prediction errors. There was evidence for
domain-specific error signals––in the visual hierarchy during visual perception, and the dorsomedial prefrontal cortex during social
inference. We assessed bias following prior neuroimaging meta-analyses and used family-wise error correction for multiple
comparisons. This organization of computation by region will be invaluable in building and testing mechanistic models of cognitive
function and dysfunction in machines, humans, and other animals. Limitations include small sample sizes and ROI masking in some
included studies, which we addressed by weighting each study by sample size, and directly comparing whole brain vs. ROI-based
results.
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INTRODUCTION
The reward prediction error (PE) signal in primate midbrain codes
a mismatch between expected and experienced reward. It
updates value expectations and drives action selection according
to reinforcement learning theory [1]. It has been measured
invasively in rodents [2, 3], primates [1], and humans [4], and
studied with functional magnetic resonance imaging (fMRI) in
humans [5]. It has been causally implicated in learning with
optogenetics [6].
Recently the scope of PE has broadened to fMRI studies of

perceptual [7], social [8], linguistic [9], and causal inferences [10].
We conducted a quantitative meta-analysis of studies of reward PE
and PE cast more broadly. We sought to determine whether PEs
invoked as mechanisms across domains of processing share
underlying neural substrates, or rather, each domain implements
its own specific PE.
We integrate findings from multiple independent studies

of PE [11]. Functional imaging studies are expensive so
sample sizes are often limited, which limits statistical power
to detect true responses, and undermines confidence in
cognitive neuroscience [11]. By summarizing across reported
PE signals and weighting the contribution of each study by its
quality [11], we learn how varieties of PE are instantiated in the
human brain.

METHODS
Search strategy and study selection
The Preferred Reporting Items for Systematic Reviews and Meta-Analysis
(PRISMA) system guided our search and selection (see Figure S1). We
searched Google Scholar, with the following terms: (1) “predic* AND error*
AND (fMRI OR imaging OR neuroimaging) AND (learning OR conditioning)”,
and (2) “reinforcement AND (fMRI OR imaging OR neuroimaging) AND
(learning OR conditioning).” Separate searches were conducted for each
year between 1999–2018, with publication date restricted to December
2018 at the latest. We first reviewed abstracts, and excluded those that
were irrelevant (e.g., animal data only, reviews, etc). Full text papers were
then read by two authors (JAM & PRC) to determine final inclusion. Next,
we selected 13 of the most highly-cited included papers, searched for
papers that cited them (i.e., forward search), and examined those papers
for inclusion. We also searched through reference sections of previously
published meta-analyses, reviews, and papers identified by searching
Neurosynth (Neurosynth.org) for the terms (“prediction AND error” and
“reinforcement AND learning”).
38,831 abstracts were identified: 26,106 from searches and 12,725 from

other sources.
After removing duplicates, 24,751 abstracts were reviewed, and 574 full-

text papers were evaluated for inclusion. Of those, 263 papers were
included in analyses, contributing 464 independent contrasts, and
representing 6,454 participants.
Only published, peer-reviewed, original research articles were consid-

ered. Included studies met the following criteria: (1) Human adult
participants 18–65; (2) They employed fMRI; (3) They provided Talairach
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or Montreal Neurological Institute (MNI) coordinates; (5) They used image
subtraction or parametric modeling (using computational model para-
meters) to determine PE activation foci.
In the absence of PE, we excluded studies that focused on the

anticipation of reward or punishment, extinction, subjective value, or
correlations with learning rate parameters. We excluded papers with
clinical groups; unless data from healthy comparison participants were
reported separately. We excluded studies of drug administration, including
placebo, since it may be PE mediated [12]. We excluded studies of genetic
polymorphisms effects on PE.

Data extraction and reduction
For each included study we extracted the following information: N
(number of participants contributing to each reported coordinate), xyz
coordinate for each significant reported activation, coordinate system
(Talairach or MNI), whether derived from a region of interest (ROI) or
whole brain analyses, and whether statistical analyses employed a
random/mixed or fixed effects model. Further, we coded several fields of
meta-data, including: (1) whether PE was engendered by a primary or
secondary reward; (2) the specific type of outcome (e.g., social, money,
points, feedback); (3) the type of computational model (e.g., Bayesian,

temporal difference); (4) whether PE was positive (corresponding to an
unexpected occurrence of reward or punishment), or negative (corre-
sponding to an unexpected omission of reward or punishment); (4)
whether PE was signed or unsigned; (5) whether PE was calculated at the
time of the cue or during the outcome; (6) whether the task involved
instrumental or Pavlovian conditioning; (7) whether the study involved
an appetitive or an aversive outcome; (8a) PE type: typical reward
prediction error, or atypical; prediction error capturing a violation of
beliefs; and (8b) atypical PEs were further coded as: cognitive (if
expectations based on beliefs were violated, but not beliefs about
rewards), effort (if expectations based on physical or cognitive effort
were violated), fictive (PE to an event that could have but did not occur
or a choice that was not taken), risk (PE regarding the reward variance or
its square root, standard deviation), and perceptual PEs (generated by
unexpected perceptual events without explicit reward or punishment).
All information was entered by one researcher and checked by the
second researcher; any disagreements were discussed and resolved.
Further details on the coding scheme for PEs are included in Table 1 and
in the supplementary materials (study coding criteria, page 15).
Coordinates reported in Talairach space were converted to MNI space
using the Tal2MNI algorithm implemented in Matlab (http://imaging.
mrc-cbu.cam.ac.uk/imaging/MniTalairach).
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Statistical analysis
We used Multilevel Kernel Density Analysis (MKDA) to determine the
distribution of peak coordinates [11]. Coordinates from each included
contrast were plotted on the standard brain, then convolved with a 10
mm spherical kernel to create a map of voxels within 10 mm of the
reported peak. This resulted in a “Contrast Indicator Map” (CIM), marked
with a value of 1 for voxels within the kernel, indicating activation near
this voxel, or a value of 0 for voxels outside of the kernel, indicating no
activation near this voxel. Next, a density map was obtained by taking a
weighted average of the CIMs, whereby weights are the square root of
the sample size for each contrast, weighing larger studies more heavily.
In line with prior meta-analyses, studies that used fixed effects analyses
would be down-weighed (0.75); however, none of the included studies
employed fixed effects analyses. This created an interpretable meta-
analytic statistic (P) at each voxel, representing the weighed proportion
of contrasts that activate within 10 mm of each voxel. These results were
then thresholded using Monte–Carlo (MC) simulation: we compared the
meta-analytic statistic (P) with a null-hypothesis density (P0) estimated via
simulation. The null hypothesis was a uniform random distribution of
peaks within each contrast in the gray-matter mask of the standard brain.
For each CIM, we identified contiguous activation clusters of suprathres-
hold voxels. In each of 5000 MC iterations, the spatial location of the
activation clusters was selected at random within a gray-matter mask.
After each MC iteration, the maximum cross-density statistic (P) over the
whole brain was saved. To threshold the images, we then derived a
critical Familywise Error (FWE) rate by determining the weighted cross-
density statistic (P) that exceeds the whole brain maximum in 95% of the
MC maps, controlling for false positives at p < 0.05 corrected. After each
MC iteration, the largest cluster of contiguous voxels was saved, and we
set a cluster extent threshold at the 95% percentile across iterations,
following “cluster extent-based” multiple comparison correction [13]. Our
results represent (1) Meta analysis across all included studies; (2) Meta-
analyses across subsets of included contrasts (e.g., those coded as
[signed PEs]); (3) Meta-contrasts that compare subsets of contrasts (e.g.,
[appetitive > aversive]); and (4) formal conjunctions of separate meta-
analytic maps (e.g., [signed and unsigned prediction error]). Identical
thresholding procedures were applied across these analyses: first, images
were thresholded at a voxel-wise threshold of p < 0.001, and then we

thresholded them with a cluster extent threshold at a level of p < 0.05,
FWE, determined with the MC procedure.
We created conjunction images using the minimum statistic method [14]

with the weighted cross-density statistic (P). Each individual map contributing
to the conjunction was independently thresholded at a level of p < 0.05, FWE
using bootstrapping. Then, we calculated a formal conjunction across
independently thresholded images. That is, voxels were included in the
conjunction image only if activity exceeded the corrected threshold in all of
the contributing maps. The conjunction map was thresholded with the
minimum cluster threshold that exceeded p< 0.05, FWE. Conjunction
analyses license conclusions about the voxels shared by particular types of
PE. If PEs across domains share voxels we inferred that they share an
underlying circuitry comprising those voxels. If this circuitry was more
consistently engaged for one type of PE than the others, we inferred that this
type of PE taxed the circuitry more strongly. We believe this because the
magnitude of PE activity typically correlates with the extent of behavioral
learning and belief change. Overall, we aimed to delineate the shared and
unique circuitry underlying different domains of PE.

RESULTS
Omnibus contrast
Across all 464 contrasts from 263 included papers we found PE
signals in the midbrain, dorsal and ventral striatum, thalamus,
amygdala, insula, claustrum, dorsolateral prefrontal cortex (dlPFC),
ventrolateral PFC (vlPFC), parietal cortex, precuneus, orbitofrontal
and medial prefrontal cortex, occipital cortex, and posterior and
anterior cingulate (Fig. 1, Table S1).

Primary versus secondary rewards
We examined PEs for primary reinforcers (like juice, Fig. S2A,
Table S2A) compared to secondary reinforcers (like money,
Fig. S2B, Table S2B). If these are coded relative to some ‘common
currency’, they ought to share processing loci [15]. On the other
hand, motivational state and degree of familiarity may generate
unique PE loci for primary versus secondary rewards.

y=10 z=-12

All Prediction Errors

x=0p < .05,  
FWE

p < 1e-6

dlPFC

insula

parietal

Fig. 1 Prediction error brain regions across studies. PE signals were found in the midbrain, striatum, thalamus, insula, claustrum,
dorsomedial prefrontal cortex, ventrolateral PFC, dorsolateral prefrontal cortex (dlPFC), parietal cortex, precuneus, orbitofrontal cortex,
occipital cortex, and anterior cingulate.
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Conjunction analysis revealed that PE for both primary and
secondary rewards engaged both dorsal and ventral striatum,
midbrain, and insula and vlPFC (Fig. S2D, Table S2E). This is
consistent with a “common currency” account.
However, when we compared them, primary rewards more

consistently induced PEs in the dorsal striatum, amygdala,
parahippocampal gyrus, claustrum and insula, anterior cingulate,
vlPFC, dmPFC, and supplementary motor area than secondary
(Fig. S2C, Table S2C). Secondary rewards more consistently engaged
the ventral striatum and subgenual cingulate (Fig. S2C, Table S2D).
Further, PEs for points more commonly engaged the ventral

striatum, thalamus, medial PFC, and subgenual cingulate than
those for money (Figure S7, Table S11A), while regions that were
more engaged with money than points included the subgenual
cingulate extending into OFC, and distinct regions of dorsal and
ventral striatum (Fig. S7, Table S11B).

Appetitive and aversive
We examined aversive and reward PEs in human fMRI studies.
Brain regions encoding appetitive PE included vlPFC, both dorsal
and ventral striatum, amygdala, thalamus, midbrain, bilateral
insula, medial PFC (mPFC), anterior and posterior cingulate, and
vlPFC (Fig. S3A, Table S3A). Aversive PEs were encoded in insula,
claustrum, vlPFC, supplementary motor area, dorsomedial PFC
(dmPFC), precuneus, both dorsal and ventral striatum, midbrain,
amygdala, parahippocampal gyrus, thalamus, and subgenual
cingulate (Fig. S3B, Table S3B).
Conjunction analysis revealed both appetitive and aversive PEs

engaged the midbrain and dorsal and ventral striatum, amygdala,
parahippocampal gyrus, insula, cingulate, claustrum, and vlPFC
(Fig. S3D, Table S3E). However, contrasting appetitive with aversive
PE, we found more consistent appetitive PE responses in dmPFC,
mPFC, subgenual cingulate, posterior cingulate, parietal lobe, and
both dorsal and ventral striatum (Fig. S3C, Table S3C). There was
more activity for aversive vs. appetitive PEs in the vlPFC, insula,
claustrum, dmPFC, anterior cingulate, a more posterior region of the
midbrain, as well as distinct regions of dorsal and ventral striatum,
amygdala, hippocampus, and thalamus. (Fig. S3C, Table S3D).

Perceptual and cognitive prediction error
We tested whether regions of the dopamine system also underpin
learning perception and cognition. Computing a conjunction
across typical reward, perceptual, and cognitive PEs revealed PE
signals in the ventral striatum, dorsal striatum, pallidum, insula,
and vlPFC (Fig. 2D, Table S4D).
Predictive processing models of the mind and brain posit a cost

function for state transitions (rather than value). Under predictive
processing, sensory hierarchies, like the visual system, ought to
compute and exhibit PEs. Indeed, this is what we observe: PEs
spanning the visual cortical hierarchy (Fig. 2C, Table S4B).
However, it is unclear whether reward and perceptual prediction
errors are computed by the same systems. Some theories suggest
they are identical [16]. To test for such overlap, we computed a
formal conjunction of perceptual and typical reward PEs (Fig. S6A,
Table S4D). This revealed overlapping activity in the dorsal and
ventral striatum, thalamus, and insula.

Instrumental and Pavlovian prediction error
Organisms learn passively from the environment (Pavlovian), and
actively from the consequences of their actions (Instrumental) [17].
Instrumental PEs engaged the dorsal and ventral striatum, insula,
midbrain, and frontal regions including vlPFC, dmPFC, mPFC, anterior
and posterior cingulate, parietal regions, and occipital gyrus (Fig. 3A,
Table S5A). Pavlovian PEs engaged dorsal and ventral striatum,
midbrain, anterior cingulate, amygdala, thalamus, insula, and vlPFC
extending into OFC (Fig. 3B, Table S5B). The contrast of instrumental
PEs vs. Pavlovian PEs revealed that instrumental PEs were associated
with activity in dorsal and ventral striatum, anterior cingulate,

posterior cingulate, dorsomedial PFC, frontal eye field and parietal
cortex (Fig. 5C, Table S6C). Pavlovian PEs were more likely to be
associated with activity in amygdala, parahippocampal gyrus,
putamen, insula, thalamus, dlPFC, dmPFC, precentral gyrus, a distinct
region of cingulate gyrus, and temporal and occipital regions (Fig. 3C,
Table S5D). A conjunction revealed dorsal and ventral striatum,
pallidum, midbrain and insula (Fig. 3D, Table S5E). There were more
consistent Pavlovian PEs in the OFC. This is congruent with
preclinical data, wherein rodent OFC lesions impair updating of
stimulus-outcome associations, but not instrumental learning [18].
However, there may be dissociable learning mechanisms within OFC
[19]. It appears medial OFC was more consistently engaged by
instrumental PE, and lateral more consistently engaged by Pavlovian
PE. This aligns with rodent work that suggests lateral OFC lesions
impair Pavlovian (but not instrumental) learning [20], and medial
lesions impair Instrumental learning [21].
Furthermore, there was also substantial overlap between Instru-

mental versus Pavlovian learning and appetitive versus aversive PEs
(Fig. S8, Table S12). This may speak to the relative importance of
positive versus negative reinforcement in action selection. However,
we favor a more mundane explanation: The apparent similarity
between instrumental/appetitive and Pavlovian/aversive PEs may be
a function of prevailing experimental trends: human functional
neuroimaging studies of instrumental learning rarely employ
negative outcomes. Pavlovian conditioning studies in human
participants often employ aversive outcomes. Using a chi-squared
test, we found that valence labels (appetitive and aversive) were
differentially related to the instrumental and Pavlovian labels (χ2=
11.77, p= 0.0006). Specifically, the odds of Instrumental studies
being appetitive compared to Pavlovian studies were 3.48–1 [95%
CI= 1.72,7.10; relative risk: 1.55, 95% CI= 1.16,2.08].

Active inference?
Some predictive coding accounts posit a PE minimization
mechanism for one’s actions and their impact upon
perception––in this way dopaminergic PEs impact perception
[16]. Recent preclinical data support this idea [22]. Active inference
accounts suggest that actions that minimize PEs are selected [23].
The conjunction of Pavlovian, Instrumental, and Perceptual PE
thus defines possible circuits for active inference. This analysis
revealed claustrum, bilateral insula extending into OFC, and dorsal
and ventral striatum (Fig. S5, Table S9).

Precision-weighted and social prediction error
Some accounts center on the precision of PE: they contribute to
learning to the extent that they are reliable. We compare and
contrast the circuits underlying PEs with and without precision-
weighting (Fig. S4). In formal associative learning theory, there are
models that track signed PEs––PEs that have a positive or negative
sign – and others that track unsigned PEs, which may increase cue
processing, associability, and learning about stimuli with unpredict-
able consequences [24] or decrease them, focusing instead on
stimuli that serve as reliable predictors [25]. None of the papers in our
meta-analysis fell in this latter category. All the papers that employed
unsigned PE modeled errors to increase learning rates; thus, we
consider them precision-weighted PE in the predictive processing
sense (i.e., that they weight the impact of PE by its variability).
Both signed and unsigned PEs were associated with activity in

the midbrain, dorsal and ventral striatum, insula, supplementary
motor area, and frontal eye field (Fig. S3D, Table S8E). However,
comparing signed to unsigned PEs revealed more activity in dorsal
and ventral striatum, pallidum, medial PFC, and anterior and
posterior cingulate for signed PEs, while unsigned PEs were
associated with more consistent activations in cerebellum, dlPFC,
dmPFC and a distinct cingulate region, supplementary motor area,
supramarginal gyrus, parietal regions, middle temporal gyrus,
claustrum, and disparate regions of insula compared to signed PEs
(Fig. S3C, Table S8C).
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FWE
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p < .05,  
FWE

p < 1e-6

C. Perceptual PE

D. Typical, Perceptual & Cognitive PEs
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FWE
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p < 1e-6

A. Typical PE
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B. Cognitive PE

z=-12

x=-34y=10 x=54x=46

Fig. 2 Typical, perceptual, and cognitive prediction errors. A Typical PE engaged anterior cingulate, ventral and dorsomedial PFC, posterior
cingulate, striatum, midbrain, and insula. B Cognitive PE engaged dorsomedial and ventromedial PFC, striatum, midbrain, and ventrolateral
PFC. C Perceptual PE engaged dorsolateral PFC, parietal cortex, striatum, and middle temporal gyrus, superior temporal gyrus, supramarginal
gyrus, and parietal lobe. D A conjunction across typical reward, perceptual, and cognitive PEs revealed PE signals in regions including the
ventral and dorsal striatum, pallidum, insula, and ventrolateral PFC.
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x=0 y=10 z=-12

x=0

x=0 z=6 
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y=10
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Contrast counts

Pavlovian
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6257
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FWE

p < .05,  
FWE

p < 1e-6

p < .05,  
FWE

p < 1e-6

p < .05,  
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p < 1e-6

A. Instrumental PE

D. Instrumental & Pavlovian Conjunction

p < 1e-6

C. Instrumental > Pavlovian PE

y=10 

Fig. 3 Instrumental and Pavlovian prediction errors. A Instrumental PEs engaged the dorsal and ventral striatum, insula, midbrain, and
frontal regions including ventromedial and dorsomedial PFC, ventrolateral PFC, anterior and posterior cingulate, and parietal regions.
B Pavlovian PEs engaged dorsal and ventral striatum, midbrain, anterior cingulate, amygdala, thalamus, parietal regions, insula, and inferior
frontal gyrus. C The contrast of instrumental PEs vs. Pavlovian PEs revealed that instrumental PEs were associated with activity in ventral
striatum, anterior cingulate cortex, posterior cingulate, midbrain, dorsomedial PFC, dorsolateral PFC, precentral gyrus, precuneus, and parietal
cortex (orange). Pavlovian PEs were more likely to be associated with activity in amygdala, putamen, insula, thalamus, a distinct region of
cingulate gyrus, and temporal and occipital regions (blue). D A conjunction revealed striatum, midbrain, insula, and parietal regions.
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These findings may also inform the mechanisms of social
inference. At issue is whether there are dedicated, informationally
encapsulated, social modules in the mind and brain [26].
Alternatively, social inference may, through phylogeny, have co-
opted general precision-weighted inference mechanisms. We
computed the intersection between regions evincing PEs during
social tasks, and those reflecting non-social PEs, and in particular
precision-weighted PEs. We found extensive overlap (Fig. 4D,
Table S6C). Dorsal and ventral striatum, pallidum, vlPFC, orbito-
frontal cortex, and insula appeared in the intersection between
social and precision-weighted non-social PEs.
We also found relatively more activation for social PEs than

other non-social PEs in cingulate, dmPFC, and ventromedial and
orbitofrontal PFC (Fig. 4C). Notably, these regions are not unique
to social processes or to social PEs [27, 28], although recent single-
unit recordings in human dmPFC did show selectivity for PE about
others’ beliefs, there were neurons selective for sensory PEs, and
others sensitive to both [29]. Dorsal and ventral striatum, anterior
and posterior cingulate, a distinct region of mPFC, thalamus, left
insula, midbrain, and parahippocampal gyrus were more engaged
for non-social PE than social PE.

Midbrain PEs
We employed FWE cluster extent thresholding. It affords
sensitivity to weak and diffuse signals, but has poor spatial
specificity, which is problematic for smaller regions like the
midbrain. We observed midbrain PE signals in our omnibus
analysis, as well as for reward PE, and cognitive PE, even with this
thresholding approach. However, when we focus on the midbrain
and relax the cluster extent threshold, we observe midbrain PE
responses for perceptual and social tasks (Fig. S8A, Fig. S9A).

Regions of interest vs. whole brain analyses
Limiting analyses to a-priori regions of interest (ROIs) is common
in functional neuroimaging. In PE studies, masking often focuses
on striatum and midbrain. There is nothing erroneous about this
approach, however, it runs the risk of the Drunkards Search
Principle––people search where it is easiest to look (e.g., reason-
ably, where others have looked). Whilst a-priori preclinical data
support searching for reward PEs in the striatum, doing so may
have led our field to ignore other sources of reward PE in the
human brain. To explore this possibility, we compared activations
from contrasts that employed a-priori ROIs with those that did not.
Results from whole brain contrasts consistently reported PE
signals in the dlPFC, mPFC, parietal, and visual cortices more so
than studies that employed ROI masks that were often limited to
the basal ganglia and midbrain (Fig. 5A, Fig. 5B, Table S10). A
contrast comparing PEs from whole brain compared to ROI
analyses showed widespread cortical and subcortical regions,
including medial and lateral PFC, insula, parietal regions, and
temporal and occipital cortex (Fig. 5C). We further assessed
reporting bias in terms of number of reported foci as a function of
sample size (Fig. S11), but note that our MKDA approach uses
contrast as a unit of analysis, weighted by sample size, and is less
likely to be distorted by studies with larger numbers of foci.

DISCUSSION
We conducted the most comprehensive meta-analysis of fMRI
studies of PE to date. Previous meta-analyses examined signed and
unsigned PEs [30], Pavlovian and instrumental learning [5, 31, 32], as
well as outcome type and valence [5, 32]. We consider all of these
tasks and more, concurrently, and include more studies.
Our conjunction analyses (Figs. 2D, 3D, 4D, purple) suggest a

core circuit that processes PE across domains incorporating dorsal
and ventral striatum, and insula. We conceptually replicate Sharpe
and colleagues [33], wherein midbrain dopamine neurons
respond to violations of causal and perceptual expectation. We

observed these signals in the striatum, particularly when we
examined the intersection between Pavlovian, Instrumental and
perceptual PE signals. Consistent with predictive processing
accounts of vision [34, 35]––we also observed perceptual PE
signals spanning the visual processing hierarchy.
There appeared to be regionally compartmentalized PEs for

primary and secondary rewards. Primary rewards elicited PEs in
the dorsal striatum and amygdala, while secondary reward PEs
were in ventral striatum. This is consistent with the representa-
tional transition that occurs with learning [36]. We also found
separable PEs for valence domains: caudal regions of the caudate-
putamen are involved in the learning of safety signals and
avoidance learning [37–39], more anterior striatum is selective for
rewards, while more posterior is selective for losses [40]. We found
posterior midbrain aversive PE, consistent with preclinical findings
that dopamine neurons––which respond to negative valence––are
located more posteriorly in the midbrain and project to medial
prefrontal regions [41]. Additionally, we found both appetitive and
aversive PEs in the amygdala, consistent with animal studies [42–
47]. The presence of both appetitive and aversive PE signals in the
amygdala is consistent with its expanding role regulating learning
based on surprise and uncertainty [48] rather than fear per se.
Perhaps conspicuous in its absence, given preclinical work, is

the hippocampus, which is often held to be a nexus for reward PE,
memory PE, and perceptual PE [49]. This may be because the
hippocampus is constantly and commonly engaged throughout
task performance. Its PEs may not be resolved by the sluggish
BOLD response, which is based on local field potentials and may
represent the projections into a region (and therefore the striatal
PE signals we observed may be the culmination of the processing
in CA1, CA3, and subiculum). Furthermore, we have only recently
been able to image subfields of the hippocampus (with higher
field strengths and more rapid sequences); as higher resolution PE
papers accrue we will revisit the meta-analysis of PEs.
Precision weighting of PE has been increasingly emphasized,

wherein PEs are accommodated or assimilated depending on their
inverse variance. The core PE circuit seems to deal in precision-
weighted as well as signed PE (Fig. 2D, Fig. S3). The human insula
has consistently been implicated in precision weighting of reward
[50–52] and perceptual PEs [53]. We confirmed these associations.
The extensive overlap between precision weighted PEs (across

domains) and social PEs (a specific domain, Fig. 4D) is consistent
with the idea that social and non-social inferences share underlying
cognitive and neural machinery. A recent study observed overlap
between unsigned PE and social conformity in the same
participants––notably in the anterior insular cortex, as we observed
[54]. However, multivoxel pattern analyses (MVPA) of the same data
suggested independent voxels coded unsigned reward PEs and
social conformity [54]. It is apparent from simulations that univariate
and MVPA are sensitive to different data features [55]. MVPA is
sensitive to voxel level variability even when the same linear
relationship is present in all voxels [55], and it is insensitive to
variability in mean activation across a region [55]. Thus, MVPA is not
necessarily the golden-road to inferences about computation, and,
furthermore, the same computational model ought to have been
applied to the reinforcement learning and social conformity data,
whilst exploring their shared and unique underlying computational
architecture. We take this approach, centering PE across social and
non-social studies. Our approach and results are more consistent
with the univariate analysis––suggesting a shared focus on social
and precision-weighted PE in the anterior insula and thus, a domain-
general account of social inference.
However, the social vs. non-social PE contrast revealed regions

that were more consistently engaged by social PEs, but also
somewhat engaged by reward PEs more broadly (Fig. 7C). To
establish specificity of social functions, Lockwood et al argue there
must be dissociation between social and non-social in algorithm
or implementation, and domain-general processes must be ruled
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Fig. 4 Social and unsigned prediction errors. A Social PEs engaged medial PFC, dorsomedial PFC, dorsal and ventral striatum, and insula.
B Unsigned PEs showed activity in the dorsomedial PFC and anterior cingulate, dorsal and ventral striatum, midbrain, insula, middle frontal
gyrus, precentral gyrus and inferior frontal gyrus. C We also found relatively more activation for social PEs than non-social PEs in the anterior
cingulate, ventromedial PFC, and dorsomedial PFC (orange). Regions including dorsal and ventral striatum, left insula, subgenual and
posterior cingulate, showed more activity for non-social than social PEs (blue). D We computed the intersection between regions evincing PEs
during social tasks, and those reflecting non-social PEs, and in particular, precision-weighted PEs. Regions including caudate, ventrolateral
PFC, dorsomedial PFC, and insula appeared in the intersection between social and precision-weighted, non-social PEs.
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Fig. 5 Prediction errors from whole brain and region of interest analyses. A Results from whole brain analyses consistently reported PE
signals in the dorsolateral prefrontal, parietal, and visual cortices, along with striatum, amygdala, anterior and posterior cingulate, insula,
medial PFC and midbrain. B Studies that employed ROI masks that were often limited to the basal ganglia and midbrain. C The contrast of
whole brain analyses compared to ROI analyses revealed activity in many regions, including medial and lateral PFC, insula, parietal cortex,
temporal lobe and visual cortex.
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out [27]. Here, we found domain-general precision-weighting had
algorithmic and implementational overlap with social inference,
consistent with the idea that social inferences tax the general
inference machinery, rather than a separate social processing
module. We did, however, find greater responses to social than
non-social PE in the dmPFC (Fig. 4C), consistent with the
engagement of this region during theory of mind tasks [56] and
single unit recording [29]. It is possible that this region represents
PEs specific to the social domain, although this was not clearly the
case at the single neuron level [29]. Some theories of cognitive
function and dysfunction posit domain-specific mechanisms [57].
Others hypothesize more domain-general processes [58–60]. The
involvement of social versus non-social PE signals in some
phenomenon of interest might serve a means of adjudicating.
Many of the extra-striatal PE signals we report may have been

ignored because of the practice of a-priori ROI masking. The field
had strong expectations of basal ganglia and midbrain PE based
on the preclinical electrophysiology. Initially, it was important to
confirm these signals in the human brain by focusing specifically
on those regions. However, such an approach has failed to
capitalize on one of the strengths of functional neuroimaging;
namely that we can acquire an image of the whole brain every few
seconds [61]. Analyses that explored PE signals outside of the
narrow striatal field of view tended to report PEs in the lateral
frontal, parietal, and visual cortices.

Summary
We believe our work has three main mechanistic implications:

1. There is a core, domain general circuit incorporating the
striatum and insula, and likely midbrain, which signals PEs
during perception, cognition, and action, with social agents
as well as non-social tasks. This circuitry may serve as a locus
of translation across species.

2. There are domain-specific and circumscribed PE
mechanisms––for example in visual perceptual tasks, and
social tasks. Focusing on social PEs may inform the social
deficits observed in people with serious mental illnesses. For
the visual, the interplay between perceptual PEs proper, and
more general mechanisms may inform the mechanisms of
perception, as well as perceptual aberrations in illness.

3. The practice of ROI masking, whilst well-grounded in
monkey and more recently rodent work, has perhaps
limited our inquiries into PE signaling in humans. The
current novel finding that there are numerous cortical
targets for general and specific error signals bodes well for
mechanistic investigations using transcranial magnetic
stimulation in human health and disease.

CONCLUSION
These results provide insights into animals, humans, and
machines. Preclinical researchers might search for the more
nuanced extra-striatal PEs we found, targeting homologous
structures in animal brains. Indeed, this work has already begun
[62]. Thus far, careful dissections of circuit mechanisms of PE have
involved several brain regions [63]. Human fMRI of PE, including
the present work, may help contextualize and expand this effort
by providing whole brain insights. This must of course be coupled
with a deeper inquiry into and appreciation of the mechanisms of
the BOLD signal, which likely reflects local field potentials, and
thus inputs to a region rather than spiking within it [64].
Combining incisive and precise recording and manipulation
techniques along with BOLD measurements will be particularly
revealing, and has been already [65, 66].
Human researchers might use these maps to choose tasks,

analyses, or a priori circuits of interest to study, should they have

specific questions or suspect particular PE dysfunctions. Further,
by delineating which algorithms might be implemented in the
human brain, and how, our data may be relevant to the
development of human-inspired artificial intelligence [67, 68].
More broadly, we answer critics of fMRI by offering concrete
examples of functional imaging data informing models of
cognitive function, proffering new testable predictions.

DATA AVAILABILITY
All maps featured (included in the figures and described in the text) are available on
Neurovault (https://neurovault.org/collections/IMXQLEGV/). These may be used to
generate region of interest masks for each feature, comparison, or conjunction. Tables
of coordinates for each contrast and conjunction are available on the Open Science
Framework (OSF, https://osf.io/6nuw7/?view_only=6fa6a080c3434409a07100f7c80
88d87), as well as in supplementary information.
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