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ABSTRACT 21 

Mental imagery has been proposed to play a critical role in the amplification of cravings. 22 

Here we tested whether olfactory imagery drives food cue reactivity strength to promote 23 

adiposity in 45 healthy individuals. We measured odor perception, odor imagery ability, and food 24 

cue reactivity using self-report, perceptual testing, and neuroimaging. Adiposity was assessed 25 

at baseline and one year later. Brain responses to real and imagined odors were analyzed with 26 

univariate and multivariate decoding methods to identify pattern-based olfactory codes. We 27 

found that the accuracy of decoding imagined, but not real, odor quality correlated with a 28 

perceptual measure of odor imagery ability and with greater adiposity changes. This latter 29 

relationship was mediated by cue-potentiated craving and intake. Collectively, these findings 30 

establish odor imagery ability as a risk factor for weight gain and more specifically as a 31 

mechanism by which exposure to food cues promotes craving and overeating. 32 

 33 

Keywords: olfaction, imagery, food cue reactivity, craving, food intake, fMRI, obesity, piriform 34 

cortex, neuroimaging  35 
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INTRODUCTION 36 

 The 21st century rise in obesity coincides with the increased prevalence of palatable, 37 

energy-dense foods and ubiquitous cues signaling their availability1. Conditioned responses to 38 

food cues, such as increased salivation and brain responses, provide a measure of food cue 39 

reactivity. According to the ‘cued overeating model,’ such physiological and neural changes may 40 

be consciously experienced as craving, an intense desire for a particular food2,3. Food cue 41 

reactivity is positively associated with body mass index (BMI)4 and highly predictive of weight 42 

change5.  43 

 One prominent theory of craving posits that repeated mental imagery of the sensory 44 

properties of a desired substance (e.g., food) leads to the intensification of cravings6. 45 

Specifically, the Elaborated Intrusion Theory of Desire argues that craving episodes persist in a 46 

vicious cycle by which mental images provide immediate pleasure but exacerbate the 47 

awareness of a deficit and promote further planning to satisfy the desire6. Sensory imagery is a 48 

primary component of subjective food, drug, and alcohol craving, and the self-reported vividness 49 

of this mental imagery is positively associated with craving strength7–13. Accordingly, protocols in 50 

which individuals are asked to imagine palatable foods are frequently used to induce craving14.  51 

Of central relevance to the current investigation, not all sensory modalities are similarly 52 

imaginable. The self-reported ability to imagine sights and sounds is nearly universal, whereas 53 

the ability to imagine odors and flavors varies widely across the population15–19. Previous work 54 

from our lab demonstrated that the self-reported vividness of imagined olfactory, but not visual, 55 

stimuli positively correlates with BMI20. These data raise the possibility that odor imagery ability 56 

confers risk for food cue reactivity and weight gain; however, whether this self-report measure 57 

reflects actual odor imagery ability is not clear. Also unknown is whether perceptual or neural 58 

measures of odor imagery ability are related to food cue reactivity, BMI, and weight gain 59 

susceptibility.   60 

Odor imagery ability has been quantified as the extent to which imagining an odor 61 

decreases the detectability of a weak incongruent odor21. This ‘interference effect’ correlates 62 

with self-reported odor imagery ability in women21. It has also been used to identify good odor 63 

imagers (i.e., people with strong interference effects) who exhibit odor-imagery evoked 64 

increases in regional cerebral blood flow measured by positron emission tomography in primary 65 

and secondary olfactory regions22. However, since these regions are functionally 66 

heterogenous23, the correlation might reflect general processes like attention, saliency, and 67 

pleasantness, or more specific processes like odor quality coding. This distinction is important 68 

because imagery is based on the ability to reactivate sensory circuits that code the identity of 69 
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the imagined stimulus24. In the case of olfaction, odor quality is encoded in patterns of activity 70 

across piriform cortex neurons25–27. In humans, these patterns can be decoded with multi-voxel 71 

pattern analyses (MVPA) of functional magnetic resonance imaging (fMRI) data28. Whether 72 

imagining an odor reactivates these odor quality patterns has not been tested. 73 

In the current study, we set out to first determine if the interference effect – a 74 

performance-based perceptual measure of odor imagery ability – is associated with self-75 

reported ability and the decoding of odor quality from fMRI patterns evoked by real and/or 76 

imagined odors in the piriform cortex (Fig. 1a). Our second goal was to test if the perceptual 77 

(i.e., the interference effect) and neural (i.e., piriform decoding of imagined odors) measures of 78 

odor imagery ability are associated with behavioral food cue reactivity, quantified as cue-79 

induced craving and cue-potentiated food intake (Fig. 1b). We also explored whether imagining 80 

odors elicits an independently established brain measure of food cue reactivity (Fig. 1b), the 81 

Neurobiological Craving Signature (NCS). The NCS is a recently developed multivariate brain 82 

activity pattern, or neuromarker, that predicts the intensity of self-reported food and drug craving 83 

across distinct samples29. Finally, we sought to test if odor imagery is associated with current or 84 

change in adiposity over one year (Fig. 1b). We hypothesized that better odor imagery ability 85 

would be associated with stronger food cue reactivity and greater change in adiposity (Fig. 1c), 86 

with food cue reactivity mediating the association between odor imagery and adiposity change 87 

(Fig. 1d). 88 

 89 
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 90 

Fig. 1: Study Overview and Model 91 

(a) Our first goal was to establish relationships between three measures of odor imagery ability: a validated perceptual 92 
measure adapted from Djordjevic et al. (2004)21, a self-report measure (the Vividness of Olfactory Imagery Questionnaire 93 
or VOIQ30), and a new neural measure based upon the piriform decoding of odor quality. See Figs. 2–4 for additional 94 
details on the perceptual and neural measures. 95 

(b) Our second goal was to correlate odor imagery ability with two behavioral measures of food cue reactivity: cue-96 
induced craving from an established paradigm31 and cue-potentiated intake in a bogus taste test32. We also examined the 97 
extent to which smelling versus imagining odors elicits an independently established brain measure of food cue reactivity, 98 
the Neurobiological Craving Signature29. Our third goal was to test the associations between odor imagery ability and both 99 
current and one-year changes in adiposity.  100 

(c) We hypothesized that in response to learned food cues, individuals with a better ability to imagine odors would 101 
experience stronger cravings that compel them to overeat and gain weight. In contrast, individuals with a worse ability to 102 
imagine odors would experience weaker cravings that have a low impact on their eating and weight. 103 

(d) We predicted that food cue reactivity would mediate the association between odor imagery ability and adiposity 104 
change, such that odor imagery indirectly affects adiposity change via a food cue reactivity-dependent mechanism. 105 

 106 

To test these hypotheses, we collected data from 45 adults (ages 18 – 42 years) with a 107 

range of BMIs (18.32 – 53.44 kg/m2). Participants completed three behavioral sessions and an 108 

fMRI scan at baseline to quantify odor imagery ability and food cue reactivity. They returned one 109 

year later for a follow-up session to assess adiposity change. As predicted, stronger 110 
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interference effects were associated with better decoding accuracies of imagined, but not real, 111 

odors in the piriform cortex. Decoding also correlated positively with food intake. Most 112 

importantly, food craving and intake mediated the relationships between odor imagery ability 113 

and changes in BMI and body fat percentage, respectively. Collectively, these findings establish 114 

odor imagery ability as a risk factor for weight gain susceptibility and more specifically as a 115 

mechanism by which exposure to food cues promotes food craving and subsequent intake.  116 

 117 

RESULTS 118 

Self-Report and Perceptual Measures of Odor Imagery Ability are Correlated   119 

To assess subjective experience of the ability to imagine odors and flavors, we used the 120 

Vividness of Olfactory Imagery Questionnaire (VOIQ)30 and the Vividness of Food Imagery 121 

Questionnaire (VFIQ)20, respectively. Our performance-based perceptual measure was adapted 122 

from Djordjevic et al. (2004)21 and is detailed in the Materials and Methods section (and see Fig. 123 

2a). In brief, participants were instructed to imagine the smell or sight of a rose or cookie while 124 

trying to determine which of two samples contained either the same odor (matched trial) or the 125 

other odor (mismatched trial) at their detection threshold level (determined prior to the test). In 126 

the no imagery condition, odor detection trials were performed in the absence of imagery. The 127 

interference effect (i.e., perceptual measure of odor imagery ability) was calculated by 128 

subtracting detection accuracy (% trials correct) in mismatched trials from that in matched trials 129 

of the odor imagery condition.  130 

As in previous work21, we found a significant interaction between imagery condition 131 

(odor/visual) and trial type (matched/mismatched) on detection accuracy after controlling for 132 

odor type (rose/cookie; F1,275 = 6.270, p = 0.0129). This was driven by worse performance on 133 

mismatched compared to matched trials during odor (t137 = 3.870, p = 0.0002), but not visual 134 

(t137 = 0.055, p = 0.9560) imagery (Fig. 2b). We next tested whether facilitation during matched 135 

trials, interference during mismatched trials, or a combination of the two contributed to this 136 

effect. We observed no impact of imagery condition on detection accuracy in matched versus no 137 

imagery trials (F1,207 = 2.926, p = 0.0886). In contrast, there was a main effect of imagery on 138 

detection across mismatched and no imagery trials (F1,207 = 6.187, p = 0.0137). Follow-up 139 

pairwise comparisons revealed that participants performed worse during odor mismatched 140 

versus visual mismatched trials (t137 = 2.712, p = 0.0076) and during odor mismatched versus 141 

no imagery trials (t137 = 2.434, p = 0.0162). There was no difference in visual mismatched 142 

versus no imagery trials (t137 = 0.163, p = 0.8709). Collectively, these data replicate prior 143 
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findings showing that odor imagery impairs mismatched odor detection without improving 144 

matched detection21.  145 

To determine whether this perceptual measure corresponded to self-reported odor 146 

imagery ability, we correlated the interference effect with perceived vividness of imagined odors 147 

(VOIQ30) and flavors (VFIQ20). Both correlations were significant (Fig. 2c and 2d). By contrast, 148 

no significant association was observed between the interference effect and self-reported visual 149 

imagery (Fig. 2e) in the Vividness of Visual Imagery Questionnaire (VVIQ)17. Similarly, the 150 

difference in detection accuracy on matched versus mismatched trials of the visual imagery 151 

condition did not correlate with self-reported odor (r33 = 0.306, p = 0.0735), flavor (r33 = 0.247, p 152 

= 0.1519), or visual (r33 = 0.155, p = 0.3742) imagery ability. The self-report and perceptual 153 

measures of odor imagery ability also did not vary by sex, age, household income, olfactory 154 

function, odor ratings, sniff parameters, hunger, or typical consumption of unhealthy foods 155 

(Supplementary Tables 1 and 2). These results confirm that the self-report and perceptual 156 

measures are associated, supporting the validity of using the interference effect as a measure 157 

of odor imagery ability. 158 

 159 

Fig. 2: The Perceptual Measure of Odor Imagery Ability Correlates Positively with Self-Reported 160 
Odor and Flavor, but not Visual, Imagery Ability 161 

(a) In the adapted perceptual task21 to quantify odor imagery ability, participants were instructed to imagine the smell or 162 
sight of a rose/cookie or nothing at all while trying to detect either the same (matched trial) or the other (mismatched trial) 163 
odor at their threshold level. 164 
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(b) An ANOVA revealed a significant imagery condition × trial type interaction on detection accuracy. This effect was a 165 
result of the interference (rather than facilitation) of odor imagery on detection, such that performance on mismatched 166 
trials was significantly worse during odor imagery than in the visual or no imagery conditions. 167 

(c–e) The perceptual measure of odor imagery ability (i.e., the interference effect) positively correlated with self-reported 168 
odor (c) and flavor (d), but not visual (e), imagery ability.  169 

Bar plots represent M ± SEM. Fitted scatterplots depict single participants and the 95% CI. VOIQ, Vividness of Olfactory 170 
Imagery Questionnaire30; VFIQ, Vividness of Food Imagery Questionnaire20; VVIQ, Vividness of Visual Imagery 171 
Questionnaire17. *p < 0.05; **post-hoc comparison p < 0.0167 (0.05 / 3 tests). 172 

 173 

Imagining and Smelling Odors Activate Partly Overlapping Brain Regions 174 

 To assess brain responses to real odors, rose and cookie odors (or clean air) were 175 

repeatedly delivered via an olfactometer at moderate intensity to participants undergoing fMRI 176 

scanning. These trials were interspersed with ones in which participants were instructed to 177 

imagine the odors while sniffing clean air (Fig. 3a). As there was no main effect of odor type 178 

(rose/cookie) on fMRI activity (all pFWE [family-wise error corrected] ≥ 0.3214), we collapsed 179 

across the odorants in the subsequent univariate analyses. Consistent with previous studies, we 180 

observed a main effect of smelling odors > smelling clean air in the bilateral insula, 181 

piriform/amygdala, orbitofrontal cortices, cerebellum, and middle frontal and cingulate gyri, 182 

along with the right thalamus and supramarginal gyrus and the left pre- and postcentral gyri 183 

(Fig. 3b, Supplementary Table 3). Many of the same regions were responsive to imagining 184 

odors > imagining clean air, including the bilateral insula, right putamen, and left cerebellum 185 

(Fig. 3c, Table 1). Given that most prior neuroimaging studies on odor imagery have contrasted 186 

imagining odors > smelling clean air, we also tested this effect. We found significant responses 187 

in the bilateral insula, putamen extending into the piriform cortices, pallidum, and orbitofrontal, 188 

middle frontal, and precentral gyri, along with the left cerebellum and the right hippocampus and 189 

postcentral, supramarginal, and cingulate gyri (Extended Data Fig. 1, Supplementary Table 4).  190 

  191 
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Table 1. Brain Regions with Significant Responses During Odor Imagery Versus Perception 192 

Analysis Left/Right Label (Brodmann Area) Size 
(Voxels) pFWE t 

MNI 

x y z 

Imagine odor > imagine 
clean air 

R insula posterior short gyrus 1851 <0.0001 7.514 40.5 5 0.5 
R insula anterior inferior cortex / 
inferior frontal gyrus (22)   7.121 48 9.5 –4 
R inferior frontal gyrus [57]   6.223 51 8 5 
L insula anterior short gyrus 1415 <0.0001 6.848 –34.5 14 0.5 
L insula anterior inferior cortex (13)   6.079 –42 8 –4 
L insula posterior short gyrus   5.935 –36 –2.5 8 
R putamen 108 0.0005 5.208 22.5 5 –5.5 
L cerebellum / dentate nucleus 75 0.0064 4.989 –16.5 –59.5 –32.5 
L cerebellum declive   4.816 –19.5 –61 –25 
L cerebellum declive   3.955 –25.5 –67 –22 

Conjunction:  
Smell odor > smell 
clean air + imagine odor 
> imagine clean air 

R insula anterior inferior cortex / 
inferior frontal gyrus 1608 <0.0001 6.804 46.5 11 –1 
R insula middle short gyrus   6.435 39 6.5 0.5 
R inferior frontal gyrus   5.654 51 8 5 
L insula anterior inferior cortex (13) 984 <0.0001 5.981 –42 5 –4 
L insula anterior short gyrus / inferior 
frontal gyrus (13)   5.846 –39 15.5 0.5 
L insula posterior short gyrus   5.249 –36 –2.5 8 
L precentral gyrus 55 0.0474 4.907 –39 –16 39.5 
R putamen 83 0.0045 4.702 22.5 5 –5.5 
L putamen / piriform cortex 57 0.0397 4.387 –24 3.5 –8.5 
L precentral gyrus 66 0.0181 4.159 –57 0.5 14 
L precentral gyrus   4.079 –55.5 6.5 8 

Difference:  
Smell odor > imagine 
odor 

R uncus (38) 726 <0.0001 9.321 31.5 6.5 –17.5 
R insula anterior long gyrus   8.230 37.5 2 –10 
R amygdala   7.487 22.5 –5.5 –16 
L amygdala  632 <0.0001 7.651 –28.5 2 –16 
L insula anterior inferior cortex (13)   7.642 –37.5 3.5 –10 
L insula anterior long gyrus   6.914 –39 –4 –2.5 
R posterior orbitofrontal gyrus (47) 119 <0.0001 6.050 21 24.5 –19 
R middle frontal gyrus (10) 64 0.0089 4.552 39 39.5 15.5 
R postcentral gyrus (3) 71 0.0045 4.210 60 –16 27.5 

Difference:  
Imagine odor > smell 
odor 

L supplementary motor area 132 <0.0001 6.079 –7.5 9.5 47 
L supplementary motor area (32)   3.910 –1.5 14 44 
L supplementary motor area (6)    3.682 –7.5 5 57.5 

Bold font indicates peak voxel. 193 

 194 
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 195 

Fig. 3: Univariate fMRI Activity During Odor Imagery Partly Mimics that During Real Odor Perception 196 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 8, 2023. ; https://doi.org/10.1101/2023.02.06.527292doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.06.527292
http://creativecommons.org/licenses/by-nc-nd/4.0/


 11 

(a) Overview of the fMRI paradigm with five scan runs. Five presentations each of six trial types (30 total) were 197 
pseudorandomized per run. Trials began with a 5s auditory cue including the trial type (e.g., “smell rose”) and a sniff 198 
countdown of “3, 2, 1, sniff.” In the “smell” trials, participants sniffed during the 3s delivery of a rose or cookie odor or 199 
clean air via an MRI-compatible olfactometer. During the “imagine” trials, they sniffed during a 3s clean air delivery. Trials 200 
were separated by an intertrial interval (ITI) of 7–17s (mean = 10s). 201 

(b) BOLD responses to smelling odors (rose and cookie) > smelling clean air were significant in the bilateral insula, 202 
piriform/amygdala, orbitofrontal cortices, cerebellum, and middle frontal and cingulate gyri, among other regions. 203 

(c) BOLD responses to imagining odors > imagining clean air (while sniffing) were significant in the bilateral insula, right 204 
putamen, and left cerebellum. 205 

(d) BOLD responses in the conjunction of smelling odors > smelling clean air and imagining odors > imagining clean air 206 
were significant in the bilateral insula and putamen extending into the piriform cortices, along with the left precentral gyrus. 207 

(e) BOLD responses to smelling odors > imagining odors were significant in the bilateral insula and amygdala and the 208 
right uncus and orbitofrontal cortex, among other regions. Those to imagining odors > smelling odors were significant in 209 
the left supplementary motor area. 210 

Brain sections show the SPM t-map (puncorrected < 0.005, clusters of at least 5 voxels) overlaid onto an anatomical template 211 
in MNI coordinates for illustrative purposes. In each panel, the top row depicts 3D coronal sections (18mm thick) evenly 212 
spanning y = 56 to –88mm, and the bottom row highlights important areas of activation with custom coordinates (see 213 
Table 1 and Supplementary Table 3). Color bars depict t values. L, left; R, right; Amyg, amygdala; Ins, insula; OFC, 214 
orbitofrontal cortex; Pir, piriform cortex; Put, putamen. 215 

 216 

To isolate areas of activation common to smelling and imagining odors, the comparisons 217 

of smelling odors > smelling clean air and imagining odors > imagining clean air were entered 218 

into a conjunction analysis using the conjunction null hypothesis. This revealed common 219 

activations in the bilateral insula and putamen extending into the piriform cortices, as well as in 220 

the left precentral gyrus (Fig. 3d, Table 1). We also compared the differences of smelling odors 221 

> imagining odors and of imagining odors > smelling odors to isolate clusters specific to 222 

perception versus imagery and vice versa. The bilateral insula and amygdala, right uncus, and 223 

right lateral orbitofrontal, middle frontal, and postcentral gyri were more responsive to real 224 

odors, whereas the left supplementary motor area (SMA) showed a stronger response for 225 

imagined odors (Fig. 3e, Table 1). These analyses confirmed that as in odor perception, odor 226 

imagery engages brain areas critical for olfactory processing, such as the piriform and insular 227 

cortices.  228 

Lastly, we regressed the perceptual measure of odor imagery ability (i.e., the 229 

interference effect) against whole-brain univariate BOLD responses during odor imagery. We 230 

did not observe any effects for imagining odors > smelling clean air. By contrast, the perceptual 231 

measure of odor imagery ability was negatively associated with brain response to imagining 232 

odors > imagining clean air in the right fusiform gyrus (t42 = 5.038, pFWE < 0.0001, size = 113 233 
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voxels, x = 28, y = –62, z = –14). We did not find any significant relationships in the piriform 234 

cortex, including after small-volume correction. These results suggest that odor imagery ability 235 

in the current study may not correspond to the magnitude of imagined odor-evoked activity in 236 

the primary olfactory cortex. They do not, however, indicate whether odor imagery ability is 237 

associated with odor quality coding in this region. This is important because odor quality is 238 

coded across distributed patterns of activation rather than reflected in average univariate 239 

responses28.   240 

 241 

Piriform Decoding of Imagined, but Not Actual, Odors Correlates with the Perceptual 242 

Measure of Odor Imagery Ability 243 

To isolate fMRI patterns specific to odor quality coding, we performed MVPA in left and 244 

right piriform cortex regions of interest (ROIs; Fig. 4a). We first trained and tested a support 245 

vector machine (SVM) on the voxel-based patterns of activation evoked while smelling the 246 

odors using a leave-one-run-out, cross-validated approach per individual (Fig. 4b). This analysis 247 

revealed significant group-level decoding in the right piriform cortex (mean accuracy = 63.2%, 248 

chance = 50%, t43 = 2.991, p = 0.0046; Fig. 4c), along with greater decoding accuracies in the 249 

right compared to the left piriform cortices (t43 = 2.407, p = 0.0205). Next, we examined whether 250 

the imagined odor qualities also activated distributed neural patterns by training and testing the 251 

SVM on the voxel-based patterns of activation evoked during imagery of the two odor qualities. 252 

We did not observe significant group-level decoding in either ROI (Fig. 4c). Likewise, 253 

crossmodal decoding (training on real odors and testing on imagined odors, and vice versa) did 254 

not produce any significant effects (Fig. 4c).  255 

Leave-one-run-out cross-validation in which an SVM is trained and tested on the 256 

average run-wise parameter estimates for each condition provides a relatively insensitive 257 

outcome metric. For five scan runs, one decoding error reduces the accuracy estimate by 20%, 258 

such that the read-out for any given participant is a multiple of this number (i.e., either 20, 40, 259 

60, 80, or 100%). We therefore employed a more sensitive decoding method by analyzing the 260 

split-half voxel correlations for the within-odor (e.g., smelling rose in even runs versus smelling 261 

rose in odd runs) minus the between-odor (e.g., smelling rose in even runs versus smelling 262 

cookie in odd runs) voxel-based activity patterns (Fig. 4d). In line with our SVM analyses, we 263 

performed separate voxel correlations for real, imagined, and crossmodal odors. Again, 264 

decoding accuracy was only significant for smelling real odors in the right piriform cortex (t43 = 265 

3.342, p = 0.0017; Fig. 4e). Given that odor imagery ability varies widely across the 266 
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population18, the lack of main effect of imagined odor decoding is unsurprising. However, the re-267 

activation of sensory codes during imagery may occur in those individuals with vivid imagery. In 268 

this case, decoding of imagined odor qualities in the piriform cortex should correlate with the 269 

self-reported and perceptual measures of odor imagery ability.  270 

To test this, we next examined the relationships between olfactory decoding (using the 271 

split-half voxel correlations method) and the interference effect. We restricted our analyses to 272 

the right piriform cortex in the 30 individuals with discriminable neural patterns for actual odors 273 

to ensure that any effects would not be driven by an inability to decode altogether. We observed 274 

a strong positive association between right piriform decoding of imagined odors and our 275 

perceptual measure of odor imagery ability (i.e., the interference effect; Fig. 4f). Similar 276 

analyses using the self-report measures of odor (p = 0.0571) and flavor (p = 0.0722) imagery 277 

ability approached significance. In contrast, there were no significant associations between the 278 

perceptual or self-report measures of odor imagery ability and the fMRI patterns evoked during 279 

actual odor presentations (Fig. 4g) or in the crossmodal datasets (Fig. 4h). The results remained 280 

largely unchanged when including the full sample (n = 44; Supplementary Table 5). Imagined 281 

odor decoding was also unrelated to the demographic variables, olfactory function, odor ratings, 282 

sniff parameters, hunger, and typical consumption of unhealthy foods (Supplementary Table 1). 283 

Collectively, these data demonstrate that odor imagery ability is associated with successful 284 

activation of distinct imagined odor quality codes in the right piriform cortex.  285 
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 286 

Fig. 4: Decoding of Imagined, but Not Actual, Odors in the Right Piriform Cortex Provides a Neural 287 
Measure of Odor Imagery Ability. 288 

(a) Regions of interest for the neural decoding analyses. 289 

(b) SVMs were trained to classify rose versus cookie using data from four runs and tested on data from the fifth left-out 290 
run across five CV iterations. In the “smell odor” and “imagine odor” conditions, SVMs were trained and tested on voxel 291 
patterns from the same modality (actual odors and imagined odors, respectively). For crossmodal decoding, the SVM was 292 
trained on real odor patterns and tested on imagined odor patterns (and vice versa).  293 

(c) SVM accuracies for smelling actual odors in the right piriform cortex were significant at the group-level.  294 

(d) Split-half Fisher’s Z-transformed voxel correlations calculated between odor (e.g., smelling the rose odor in even runs 295 
versus smelling the cookie odor in odd runs) were subtracted from those calculated within odor (e.g., smelling the rose 296 
odor in even versus odd runs) as a more sensitive index of neural decoding. 297 

(e) Voxel correlations for smelling actual odors in the right piriform cortex were significant at the group-level. 298 

(f–h) The perceptual measure of odor imagery ability (i.e., the interference effect) positively correlated with right piriform 299 
decoding of imagined (f), but not real (g) or crossmodal (h), odors using voxel correlations (decoding method #2). 300 

Bar plots represent M ± SEM. Fitted scatterplots depict single participants and the 95% CI. L, left; R, right; Ins, insula, Pir, 301 
piriform; CV, cross-validation. *p < 0.01; **p < 0.001. 302 

 303 

 304 
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Odor Imagery Ability is Associated with Stronger Food Cravings for Liked Foods 305 

To test our prediction that odor imagery ability is associated with food cue reactivity, we 306 

used a measure of cue-induced food craving in which participants were asked to rate the 307 

strength of their craving in response to the presentation of 90 palatable food images31 (see 308 

example stimuli in Fig. 1b). We found no significant relationships between the perceptual 309 

measure of odor imagery ability (i.e., the interference effect; Fig. 5a) or the neural measure of 310 

odor imagery ability (i.e., right piriform decoding of imagined odors; Fig. 5b) and the average 311 

rating of food craving strength. Likewise, the decoding of actual odors in the right piriform cortex 312 

was unrelated to food craving (Fig. 5c).  313 

However, the rated liking of the foods depicted in the pictures was variable and 314 

significantly correlated with craving (Supplementary Table 6). We therefore reasoned that odor 315 

imagery may intensify cravings specifically for foods that are liked and constructed a linear 316 

regression model to test for the presence of an interaction between odor imagery and food liking 317 

on the average craving rating. As predicted, the interaction was significant for the perceptual 318 

measure of odor imagery ability (t41 = 2.918, p = 0.0057) and approached significance for the 319 

neural measure (t26 = 1.835, p = 0.0780). For graphical purposes and to better understand the 320 

nature of this interaction, we used a tertiary split (n = 15 each) to separate participants based on 321 

their average food liking rated on the Labeled Hedonic Scale (LHS)33. In the low liking group 322 

(mean LHS rating = –0.17, range = –66.60 to 11.68), there was no correlation between the 323 

perceptual measure of odor imagery ability and food craving (Fig. 5d). In the medium liking 324 

group (mean LHS rating = 19.52, range = 11.83 to 27.98), a positive trend emerged that was not 325 

significant after correction for multiple comparisons (Fig. 5e). In contrast, the high liking group 326 

(mean LHS rating = 37.69, range = 29.85 to 48.98) showed a strong positive association even 327 

after correction for multiple comparisons (Fig. 5f).  328 

We also performed a follow-up analysis using a linear mixed effects model with the 329 

individual ratings for each of the 90 food pictures rather than participant averages. Craving was 330 

designated as the outcome variable; the interference effect, food liking, and the interaction of 331 

the two as fixed effects; and participant as a random effect. Testing this model once again 332 

revealed a significant interaction effect (F1,3996 = 7.571, p = 0.0060) whereby cravings for liked 333 

but not disliked foods were more intense in individuals with vivid odor imagery. In addition, 334 

accounting for subjective hunger ratings – which were positively correlated with food craving 335 

(Supplementary Table 6) – did not impact any of the results. Collectively, these data suggest 336 

that good odor imagery ability paired with high food liking may give rise to intense food cravings. 337 
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 338 

Fig. 5: Odor Imagery Ability Contributes to Food Cue Reactivity 339 

(a–c) Food craving did not correlate with the perceptual (a) or neural (b) measures of odor imagery ability or with actual 340 
odor decoding (c). 341 

(d–f) There was a significant interaction between food liking and the perceptual measure of odor imagery ability on craving 342 
(p = 0.0057). Following a tertiary split to separate participants by their average food liking, the interference effect was 343 
unrelated to food craving in the low (d) and medium (e) food liking groups after Bonferroni correction for the three tests 344 
performed. By contrast, there was a positive correlation in the high food liking group (f).  345 

(g–i) Food intake positively correlated with the perceptual (g) and neural (h) measures of odor imagery ability, but not with 346 
actual odor decoding (i). 347 

Fitted scatterplots depict single participants and the 95% CI. R, right; Pir, piriform; LHS, Labeled Hedonic Scale33. *p < 348 
0.05; **p < 0.01. 349 

350 
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Odor Imagery Ability Correlates with Cue-Potentiated Food Intake 351 

Having identified a role for odor imagery ability in food craving, we next tested for 352 

associations with our second measure of food cue reactivity, cue-potentiated food intake. We 353 

performed a validated bogus taste test32 in which participants were presented with two plates of 354 

cookies. They were instructed to sample as much as they wanted while responding to questions 355 

about the sensory properties of the cookies. They were not told that the real purpose of the test 356 

was to quantify how much was consumed in grams. In line with our expectations, the perceptual 357 

(r41 = 0.314, p = 0.0404; Fig. 5g) and neural (r27 = 0.371, p = 0.0474; Fig. 5h) measures of odor 358 

imagery ability were each positively associated with food intake. Additionally, we performed 359 

separate linear regressions to adjust for sex – since males ate more than females – and cookie 360 

liking ratings, which were positively correlated with the amount consumed (Supplementary Table 361 

6). Both the perceptual (𝛽 = 0.351, p = 0.0098) and neural (𝛽 = 0.420, p = 0.0136) measures of 362 

odor imagery ability remained as significant predictors of intake in these models. Interestingly, 363 

right piriform decoding of actual odors was unrelated to cookie consumption (r27 = –0.072, p = 364 

0.7090; Fig. 5h). These findings indicate that the association is specific to odor quality codes 365 

evoked during imagery.  366 

 367 

Neurobiological Craving Signature Responses are Stronger while Imagining a Food 368 

Versus Nonfood Odor 369 

To build upon our use of two behavioral food cue reactivity measures, our next step was 370 

to explore the extent to which smelling versus imagining odors elicits brain food cue reactivity. 371 

We assessed brain food cue reactivity using the Neurobiological Craving Signature (NCS), a 372 

multivariate brain pattern that reliably predicts self-reported drug and food craving across 373 

independent samples29. We tested a version of the NCS trained only on visual food cues and 374 

identified the ‘pattern response’ value for each participant and fMRI contrast in the current 375 

study. This pattern response describes the similarity of the participant’s contrast image (e.g., 376 

while imagining odors) to the NCS and therefore the predicted level of food craving for that 377 

individual. As such, greater NCS pattern responses indicate stronger similarity to the craving 378 

map and higher predicted levels of food craving. Although the NCS is capable of distinguishing 379 

drug users from non-users in prior work, it was not primarily trained to detect individual 380 

differences in craving. NCS pattern responses also partially depend on factors such as overall 381 

fMRI signal34, which differed in coverage of the parietal lobe across participants in the current 382 

study (Extended Data Fig. 2a). However, NCS pattern responses are particularly well suited for 383 
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assessing the impacts of within-subject interventions or contrasting contexts (e.g., examining 384 

their modulation by condition, such as smelling versus imagining the odor types and clean air).  385 

In testing the latter, we found significant main effects of perceptual modality 386 

(smelling/imagining; F1,258 = 7.765, p = 0.0057) and odor type (rose/cookie/clean air; F2,258 = 387 

9.716, p < 0.0001) and an interaction of the two (F2,258 = 4.100, p = 0.0177; Extended Data Fig. 388 

2b) on NCS pattern responses. Follow-up comparisons revealed significantly greater NCS 389 

pattern responses to smelling versus imagining the cookie (t86 = 3.192, p = 0.0020) and rose (t86 390 

= 4.593, p < 0.0001) odors, with no difference in smelling versus imagining clean air (t86 = 0.376, 391 

p = 0.7077). Smelling both the rose (t86 = 3.078, p = 0.0028) and cookie (t86 = 3.862, p = 0.0002) 392 

odors resulted in greater NCS pattern responses than smelling clean air. In contrast, neither 393 

imagining the cookie (t86 = 0.753, p = 0.0832) nor the rose (t86 = 0.499, p = 0.6193) odor yielded 394 

greater NCS pattern responses than imagining clean air. However, imagining the cookie odor 395 

did elicit stronger NCS pattern responses than imagining the rose odor (t86 = 3.068, p = 0.0029), 396 

an effect that did not occur for smelling the cookie versus rose odor (t86 = 0.428, p = 0.6695). 397 

These discrepancies suggest that the brain signature for craving is weaker during odor imagery 398 

than during real perception. Yet it may also be more finely tuned to food versus nonfood cues, 399 

such that the craving level predicted by the NCS is greater for food odors than nonfood odors 400 

during olfactory imagery. 401 

 402 

Odor Imagery Ability is Not Related to Current Adiposity 403 

In contrast with prior work20, the self-reported, perceptual, and neural measures of odor 404 

imagery ability were not significantly associated with current adiposity defined by BMI or body 405 

fat percentage (Supplementary Table 1). However, we speculated that the variance in BMI 406 

within the current participant sample (BMI: M = 26.12, SD = 6.81, Range = 18.32–53.44 kg/m2) 407 

may have differed from that across the two experiments (BMI: M = 25.75, SD = 5.06, Range = 408 

17.70–38.70 kg/m2) in the previous study comparing VOIQ score with BMI20. To test this, we 409 

used a two-sample F-test for equal variances and found that the BMI variance in the present 410 

study was significantly greater than in the prior study (F44,81 = 1.810, p = 0.0210). As the causes 411 

of obesity are heterogeneous, one possible explanation for the lack of a significant correlation 412 

between odor imagery ability and current adiposity here could be the inclusion of participants 413 

across a wider range of BMIs. 414 

 415 
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Food Cue Reactivity Mediates the Relationship between Odor Imagery Ability and 416 

Adiposity Change 417 

In the previous analyses, we demonstrate that odor imagery ability is associated with 418 

food cue reactivity but not current adiposity. To test our overarching hypothesis that odor 419 

imagery ability intensifies food cravings and increases consumption to promote longer-term 420 

weight gain, we first used correlation analyses to assess the relationships among these 421 

variables. Neither measure of odor imagery ability was significantly correlated with changes in 422 

BMI or body fat percentage over one year from the baseline to follow-up sessions (Fig. 6a-d). 423 

Food craving in the cue-induced craving paradigm was also not associated with cue-potentiated 424 

food intake in the bogus taste test (r41 = 0.255, p = 0.0983). However, food craving predicted 425 

changes in BMI (Fig. 6e) but not body fat percentage (r41 = 0.229, p = 0.1402), whereas food 426 

intake predicted changes in body fat percentage (Fig. 6f) but not BMI (r39 = 0.263, p = 0.0964). 427 

Accounting for age – which was positively correlated with change in BMI (Supplementary Table 428 

7) – did not impact any of the results. Additionally, changes in adiposity were unrelated to sex, 429 

household income, olfactory function, food liking, typical consumption of unhealthy foods, and 430 

changes in physical activity over the year (Supplementary Table 7). 431 

Given the lack of significant direct effects between odor imagery ability and change in 432 

adiposity, we tested for indirect effects via food cue reactivity across three models. The results 433 

are summarized in Table 2. Consistent with our hypotheses, cue-potentiated food intake 434 

mediated the associations between both the perceptual (Model 1) and neural (Model 2) 435 

measures of odor imagery ability and change in body fat percentage (Fig. 6g). In Model 3, we 436 

tested whether food craving mediated the relationship between the perceptual measure of odor 437 

imagery ability and change in BMI, though here we used moderated mediation to account for 438 

the effect of liking on the association between odor imagery ability and craving (Fig. 6h). 439 

Specifically, food liking was included as a moderator of the a-path. The index of moderated 440 

mediation – indicating whether the strength of the indirect effect between odor imagery ability 441 

and change in BMI via food craving depended on the level of food liking – was significant (Table 442 

2). In other words, better odor imagery ability resulted in greater changes in BMI through 443 

heightened food craving, but only in individuals who liked such high-fat, high-sugar foods. Taken 444 

together, these mediation and moderated mediation models provide evidence that odor imagery 445 

ability drives variation in food cue reactivity strength, which in turn influences risk for increased 446 

adiposity. 447 
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 448 

Fig. 6: Food Cue Reactivity Mediates the Relationships between Odor Imagery Ability and Changes 449 
in BMI and Body Fat Percentage 450 

(a–b) The perceptual measure of odor imagery ability did not correlate with change in BMI (a) or body fat percentage (b).  451 

(c–d) The neural measure of odor imagery ability did not correlate with change in BMI (c) or body fat percentage (d). 452 

(e–f) Food craving positively correlated with change in BMI (e), whereas food intake positively correlated with change in 453 
body fat percentage (f).  454 

(g–h) Visualizations of the mediation (g) and moderated mediation (h) models. In both, there was no direct effect between 455 
odor imagery ability and adiposity change (thin gray arrows), but the indirect effects via food cue reactivity (thick black 456 
arrows) were significant, conditional by food liking in g. Panel g corresponds to Models 1 and 2 and panel h corresponds 457 
to Model 3 from Table 2. 458 

Fitted scatterplots depict single participants and the 95% CI. R, right; Pir, piriform. *p < 0.05; **p < 0.01.  459 
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Table 2. Mediation and Moderated Mediation Models 460 

# Model Path/Effect: Predictor à Outcome 𝛽 SE LL UL 

1 a: Perceptual measure of odor imagery ability à Food intake 0.350 0.133 0.081 0.620 

1 b: Food intake à ∆ Body fat % 0.505 0.182 0.136 0.874 

1 c' Direct: Perceptual measure of odor imagery ability à ∆ Body fat % 0.019 0.160 –0.306 0.345 

1 a × b Indirect: Perceptual measure of odor imagery ability à Food intake à ∆ Body fat 
% 

0.177 0.091 0.031 0.382 

2 a: Neural measure of odor imagery ability à Food intake 0.407 0.166 0.063 0.751 

2 b: Food intake à ∆ Body fat % 0.722 0.221 0.264 1.181 

2 c' Direct: Neural measure of odor imagery ability à ∆ Body fat % –0.120 0.198 –0.530 0.290 

2 a × b Indirect: Neural measure of odor imagery ability à Food intake à ∆ Body fat % 0.294 0.160 0.022 0.647 

3 a: Perceptual measure of odor imagery ability à Food craving –0.180 0.133 –0.449 0.090 

3 Moderation: Perceptual measure of odor imagery ability × Food liking à Food craving 0.368 0.112 0.141 0.595 

3 b: Food craving à ∆ BMI 0.439 0.174 0.087 0.790 

3 c' Direct: Perceptual measure of odor imagery ability à ∆ BMI –0.082 0.154 –0.393 0.230 

3 Conditional a × b indirect (Low food liking): Perceptual measure of odor imagery ability à 

Food craving à ∆ BMI 

–0.079 0.103 –0.347 0.055 

3 Conditional a × b indirect (Moderate food liking): Perceptual measure of odor imagery ability 

à Food craving à ∆ BMI 

0.033 0.103 –0.347 0.158 

3 Conditional a × b indirect (High food liking): Perceptual measure of odor imagery 
ability à Food craving à ∆ BMI 

0.184 0.109 0.011 0.434 

3 Index of moderated mediation: Perceptual measure of odor imagery ability × Food 
liking à Food craving à ∆ BMI 

0.161 0.104 0.007 0.411 

We controlled for sex and food liking in Models 1 and 2 and for hunger in Model 3 since these variables were correlated 461 
with food cue reactivity (see Supplementary Table 6). Models 1 and 2 are visually depicted in Fig. 6g and Model 3 in Fig. 462 
6h. LL, confidence interval lower limit; UL, confidence interval upper limit. Bold font indicates significant effects at p < 463 
0.05. 464 

  465 
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DISCUSSION 466 

It is well established that food cue reactivity including craving is associated with weight 467 

gain susceptibility5, but the mechanisms underlying this relationship are poorly understood. The 468 

current study was motivated by the proposed role for mental imagery in craving intensity6 and 469 

the existence of significant variation in odor imagery ability18 that is positively associated with 470 

BMI20. These previous observations led us to hypothesize a role for olfactory imagery in driving 471 

food cue reactivity strength to promote weight gain. Our results support this hypothesis by 472 

demonstrating an indirect link between odor imagery ability and one-year change in adiposity 473 

via food cue reactivity. We also show that this effect is selective to imagined odors, as it does 474 

not generalize to perceptually experienced odors or to visual imagery.  475 

Mental imagery involves “top-down” reactivation of sensory circuits35–42 and is thought to 476 

help optimize adaptive behavior through simulations of future actions based on past 477 

experiences43. In the context of ingestive behavior, food choice depends upon a complex 478 

integration of internal and external signals44. Imagining what to eat may contribute to food 479 

decisions by enabling simulations of the predicted sensory pleasure and eventual nutritive value 480 

of eating a potential energy source relative to the current homeostatic state of the organism 481 

(e.g., hungry or sated). Thus, imagery facilitates the weighing of the costs and benefits that 482 

determine decisions. Indeed, recent preclinical work demonstrates that food odor exposure 483 

stimulates lipid metabolism but only in fasted animals with functioning olfactory memory45. 484 

Perhaps olfactory memory – a key component of imagery – has the same effect on preparing 485 

the body for anticipated intake in humans (and thereby enhancing motivation for food). Our 486 

findings suggest that in an environment laden with food cues, the ability to form vivid mental 487 

images of the smell and flavor of foods promotes overeating. 488 

In our study, olfactory imagery ability was assessed by multiple measures that correlated 489 

with each other and therefore support construct validity. The association between the perceptual 490 

measure (i.e., the interference effect) and the neural measure (i.e., right piriform decoding of 491 

imagined odors) was particularly strong (Fig. 4f). This suggests that piriform quality coding is 492 

critical for, and contributes to the variability in odor imagery ability that has been reported by a 493 

number of independent studies15–19. Notably, we restricted our correlation analyses to the right 494 

piriform cortex because decoding of real odors in this region was significantly greater than both 495 

chance level and decoding in the left piriform cortex. This finding is in accordance with evidence 496 

for right hemispheric dominance over olfactory processing in general46,47, odor memory48–50, and 497 

the decoding of real odor quality51,52. 498 
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In contrast to our prediction, the crossmodal decoding was not above chance level, 499 

meaning that the patterns generated by imagining the odors could not be decoded using the 500 

patterns generated by the actual perception of those same odors. One possible explanation for 501 

this finding is that the imagined odors only reactivate odor identity while the real odors reactivate 502 

odor identity plus the coding of the physiochemical odorant properties occurring across separate 503 

subpopulations of piriform cortex neurons53. Similar distinctions are observed between imagined 504 

and actual coding in other sensory modalities. For example, the neural substrates for the 505 

decoding of place memories are immediately anterior to those for real-time scene perception54. 506 

Likewise, visual imagery engages only a subset of regions contributing to visual perception55. 507 

Decoding studies at higher magnetic field strength with smaller voxel sizes would be helpful in 508 

testing this possibility.   509 

Our univariate results also align with prior work in olfactory imagery demonstrating 510 

responses in the piriform olfactory cortex while imagining odors versus smelling clean air22,56,57. 511 

It is important to note that in the current study, as well as in prior work, the perceptual measure 512 

of odor imagery ability (i.e., the interference effect) did not correspond to the magnitude of 513 

piriform responses to imagined odors. By contrast, we observed a strong association between 514 

the interference effect and imagined odor quality decoding in the right piriform cortex. This 515 

suggests that it is these quality codes that underlie imagery, with univariate responses likely 516 

including other factors such as sniffing, attention, and associative learning58. Accordingly, we 517 

ensured that sniffing did not impact our perceptual or neural measures of odor imagery ability. 518 

This is critical because sniffing induces piriform activity59 and is necessary for the generation of 519 

vivid odor imagery60,61. Individuals with better odor imagery ability take larger sniffs while 520 

imagining pleasant versus unpleasant smells, a modulatory pattern that is not seen in poor odor 521 

imagers62. Here we specifically selected pleasant odors to minimize potential sniffing 522 

differences.  523 

With respect to attention, the frontal piriform cortex and olfactory tubercle respond 524 

preferentially to attended compared to unattended sniffs63,64. In the current study, we instructed 525 

participants to sniff in each trial – irrespective of smelling or imagining – prompted by an 526 

auditory cue to equate attentional demands. Finally, although visual cues that have been 527 

associated with specific odors are capable of evoking piriform65 and olfactory bulb66 responses, 528 

we found that the interference effect correlated with self-reported odor and flavor, but not visual, 529 

imagery and that visual imagery did not interfere with detecting an incongruent odor. 530 

Collectively, these data support the conclusion that imagined odor-evoked quality codes in 531 
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piriform cortex underlie variation in imagery ability rather than non-specific effects such as 532 

sniffing, attention, or sensory associative learning. 533 

 The principal finding in the current study is that the generation of distinguishable 534 

imagined odor quality codes in the piriform cortex correlates not only with imagery ability, but 535 

also with measures of food cue reactivity that in turn predict change in adiposity. We therefore 536 

propose that better odor imagery leads to stronger food craving and greater intake that 537 

promotes obesity risk (Fig. 1c). Accordingly, our mediation analyses revealed that better odor 538 

imagery ability does not directly lead to larger adiposity change, but rather that it exerts an 539 

influence via a food cue reactivity-dependent mechanism. These results back the Elaborated 540 

Intrusion Theory of Desire, which posits that effortful cognitive elaboration of food properties 541 

through imagery intensifies cravings6. They also corroborate studies showing that vivid sensory 542 

imagery is linked to a strong desire for foods, drugs, and alcohol7–13,67. However, they are the 543 

first to isolate odor-specific imagery as the critical contributor to food cue reactivity. 544 

The current findings are also relevant to the ongoing work linking olfactory function with 545 

risk for weight gain. Although many associations have been reported, the direction is not 546 

consistent. Reports for positive68–73, negative74–81, or no82,83 relationship between olfaction and 547 

food intake, current BMI, or weight change have been made. Here we found that olfactory 548 

function – defined either as detection thresholds or as piriform decoding of actual odor quality – 549 

was unrelated to any measure of odor imagery ability, food cue reactivity, or adiposity change. 550 

The same was true for suprathreshold perceptual ratings of odor intensity, familiarity, liking, and 551 

edibility. Thus, our results suggest that olfactory simulations or imagery may drive the 552 

relationship rather than olfactory coding or perception per se, which could account for the 553 

inconsistencies that have been noted previously. 554 

For example, imagining what to eat may allow an organism to test the impact of 555 

available energy sources on their perceived hunger, pleasure, or mood before selecting which 556 

item to consume. It is well known that olfaction is tightly coupled to emotional valence84, and 557 

odor imagery ability positively correlates with the experience and processing of emotion16,85. The 558 

presence of reward-related cues during motor imagery enhances neural activity in and 559 

functional connectivity between the motor cortex and ventral striatum, giving rise to a 560 

mechanism by which the imagery may become motivationally salient enough to yield action86. 561 

While we did not measure emotional reactivity or salience in the current study, we did quantify 562 

food liking and observed a moderating effect of this variable. Specifically, we found that better 563 

odor imagery ability corresponds to more intense food cravings and larger weight gain in 564 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 8, 2023. ; https://doi.org/10.1101/2023.02.06.527292doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.06.527292
http://creativecommons.org/licenses/by-nc-nd/4.0/


 25 

individuals who exhibit strong liking of the high-fat/high-sugar foods that we tested. It is 565 

therefore likely that odor imagery interacts with pleasure to invigorate food cravings.  566 

Another possibility is that odor imagery bridges current states with future simulations in 567 

guiding food choice through the involvement of the SMA and insula. The SMA is linked to motor 568 

planning87,88, while the insula plays a role in interoception and the prediction of bodily states89–91. 569 

For instance, food cues elicit transient activity across populations of insular neurons that mimics 570 

future metabolic conditions92 and is necessary for driving food seeking behaviors93 in mice. In 571 

humans, the SMA and insula are not only consistently activated during mental imagery22,94–103, 572 

but also during food and drug craving14,104–109.  573 

Here we identified extensive clusters of activity in the insula preferentially responding to 574 

imagining odors versus clean air. Moreover, the left SMA was the only whole-brain-corrected 575 

region exhibiting stronger activity while imagining versus smelling odors. These results are in 576 

line with the responsivity of the insula and SMA to imagined versus perceived odors in prior 577 

work22,110. We also found that the pattern responses predicted by the recently developed 578 

Neurobiological Craving Signature29, which has positively weighted voxels in both the insula and 579 

SMA (among other regions), were greater while imagining a food versus a nonfood odor. These 580 

data lead to the hypothesis that information from the coding of imagined odors in the piriform 581 

cortex is relayed to the insula and SMA to simulate future interoceptive states and food 582 

decisions, promoting the cravings and physiological changes (e.g., ghrelin release) that trigger 583 

subsequent consumption. The direct links between the piriform cortex, insula, and SMA and the 584 

general validity of this model warrant future testing. 585 

Imagery requires memory systems to pull from past experiences in simulating the future. 586 

Though we screened participants for self-reported cognitive deficits or memory loss that could 587 

impact mental imagery, we did not explicitly measure memory capacity in the current study. 588 

Impaired memory and hippocampal function are hallmark characteristics in the development of 589 

obesity111. A recent study reported that despite showing disrupted memory for non-food items, 590 

individuals with obesity outperform their lean counterparts in memory for food items112. 591 

Importantly, memory was not associated with the perceived vividness of imagining scenes 592 

corresponding to the food or non-food cues in that study112. The indirect effect of odor imagery 593 

ability on change in BMI that we observed here is therefore unlikely linked to memory function, 594 

though this should be tested in the context of olfactory imagery in future work. As obesity-595 

related memory alterations may particularly stem from poor diet113,114, the subsequent question 596 

emerges of whether frequent consumption of high-fat/high-sugar foods impacts odor imagery 597 

ability. Studies do suggest that experience can improve imagery ability, with expert chefs115, 598 
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perfumers116, and sommeliers117 exhibiting more vivid odor imagery or functional reorganization 599 

in its neural correlates. Here we found no relationship between odor imagery ability and typical 600 

consumption of energy-dense foods measured with the Dietary Fat and Free Sugar Short 601 

Questionnaire118 or following the craving or bogus taste test measures. However, future studies 602 

should examine the prospective effects of dietary manipulations on odor and flavor imagery 603 

ability and, in turn, on food cue reactivity and obesity risk. Food cue reactivity across a wider 604 

range of items including nutritional foods should also be considered since there is evidence for 605 

increased attention and memory119 or selection and intake31 of healthy foods following 606 

manipulations to sensory appeal or training in cognitive regulation strategies, respectively.  607 

 Finally, we note that the current findings have relevance for obesity treatment. One of 608 

the leading behavioral strategies for decreasing food cue reactivity is cue exposure therapy 609 

(CET)2. In CET, patients are trained to refrain from eating their most desired foods during 610 

exposure in a controlled setting, thereby extinguishing the learned associations between food 611 

cues and consumption. While CET is effective for exposed cues, reductions in food cue 612 

reactivity including intake do not generalize to unexposed foods120,121, limiting the potential for 613 

weight loss. Our study demonstrates that odor imagery could serve as a novel behavioral 614 

therapy target with the VOIQ as a simple tool for screening susceptible individuals. Cognitive 615 

tasks that compete with odor imagery may be particularly fruitful in disrupting food cue 616 

reactivity122. For instance, prior research has shown that imagining the memory of a time that a 617 

snack was avoided or thinking about the future consequences of consumption can help to 618 

reduce intake in the moment123,124. We propose that imagery in the same sensory modality, such 619 

as imagining a nonfood odor or one that is disliked, may prove especially successful in limiting 620 

the capacity for flavor imagery to strengthen food cravings. 621 

 622 

Concluding Remarks 623 

In conclusion, the results of our study highlight a role for odor imagery ability in obesity 624 

risk via food cue reactivity and point to coding in the piriform primary olfactory cortex as the 625 

neural substrate. Future work should explore the extent to which odor imagery helps to integrate 626 

internal and external metabolic signals and investigate the efficacy of odor imagery being an 627 

additional behavioral target for weight loss therapy. 628 

 629 

  630 
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MATERIALS AND METHODS 631 

Participants 632 

 A flow diagram depicting the number of individuals at each stage of the study (e.g., 633 

eligibility, recruitment, completion, analysis) is provided in Extended Data Fig. 3. Participants 634 

were recruited from the local New Haven, CT, USA community and university population via 635 

flyer and social media advertisements. Individuals interested in this study or other previous 636 

studies in our lab filled out an online form using Qualtrics software (Qualtrics, UT, USA) to 637 

indicate initial information such as their sex assigned at birth, age, estimated BMI, drug use, etc. 638 

We pre-screened subjects in this database to identify individuals free from known taste or smell 639 

dysfunction, dieting behaviors, food restrictions, nicotine or drug use, serious medical conditions 640 

including metabolic, neurologic, and psychiatric disorders or medications used to treat these, 641 

cognitive deficits or memory loss that could impact mental imagery, and any MRI-642 

contraindications (e.g., being left-handed, pregnant, or having metal in the body). We then 643 

assessed for further eligibility with follow-up email questions (e.g., to ensure that these people 644 

did not note any new disorders or drug use, recent smell loss due to COVID-19, or intent to 645 

leave the greater New Haven, CT area). To capture similar individuals across a range of BMIs, 646 

we used stratification to minimize differences in sex, race, ethnicity, age, and household income 647 

among individuals recruited into 2 BMI groups (low BMI < 25 and high BMI ≥ 25 kg/m2).  648 

For the perceptual measure of odor imagery ability, 36 participants completed all 649 

imagery conditions based on a power analysis performed in G*Power version 3.1.9.6125,126 to 650 

replicate the interference effect (d = 0.722) from the prior task validation21 in the low and high 651 

BMI groups (n = 18 each) at 0.80 power (alpha = 0.05, two-tailed test, two dependent means). 652 

Twelve additional participants were then recruited to complete only the odor imagery condition 653 

and all other study measures (with one excluded from scanning due to extreme claustrophobia). 654 

This was sufficient to achieve 0.80 power (n = 42, alpha = 0.05, two-tailed test, bivariate normal 655 

model) for the effect observed between self-reported odor imagery ability and obesity risk (r = 656 

0.42) in previous work20. Data from three participants were removed due to an inability to obtain 657 

proper odor thresholds such that their detection accuracies fell below chance level (less than 658 

50% correct responses). Participant characteristics of the final sample (N = 45) by BMI group 659 

are provided in Supplementary Table 8. All individuals provided written informed consent, and 660 

the study procedures were approved by the Yale Human Investigations Committee (Institutional 661 

Review Board Protocol # 0405026766). The study was also preregistered (AsPredicted.org 662 

#56278). 663 
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 664 

Stimuli 665 

Odors included “phenylethyl alcohol white extra” (rose, #001059147) and “cookie dough” 666 

(cookie, #10610208) from International Flavors and Fragrances (New York, NY, USA) diluted in 667 

food-grade propylene glycol. The bogus taste test consisted of eight “Grandma’s Homestyle 668 

Chocolate Chip Cookies” broken into bite-sized pieces across two plates (for a total of ~280g or 669 

~1360 kcal) presented alongside a 16 fl oz water bottle.  670 

 671 

Experimental Procedures 672 

The study consisted of three behavioral sessions and one fMRI scan at baseline, along 673 

with a follow-up session one year later. Full data collection from the first (baseline) to last 674 

(follow-up) sessions spanned 10/6/2020–6/3/2022. The fMRI scan was scheduled between 675 

8:00am-1:00pm, and all other sessions took place between 8:00am-8:00pm. We ensured that 676 

food craving and intake were assessed between the hours of 11:30am-7:00pm. Individuals were 677 

instructed to arrive to all sessions neither hungry nor full, but at least one-hour fasted.  678 

Behavioral Sessions 679 

Training and Scales. Participants were first trained to make computerized ratings in 680 

PsychoPy version 3.0127 by practicing with imagined sensations (e.g., the taste of your favorite 681 

chocolate) and real stimuli (e.g., the brightness of the ceiling light or the pressure of a weight). 682 

Intensity and liking were rated with the vertical category-ratio general Labeled Magnitude Scale 683 

(gLMS)128–130 and Labeled Hedonic Scale (LHS)33, respectively. The gLMS ratings were log 684 

base 10 transformed prior to any analyses. All other ratings were made on horizontal visual 685 

analog scales (VAS). Familiarity and edibility were rated from “not at all familiar” to “more 686 

familiar than anything” and from “not at all” to “more than anything” in response to “how much do 687 

you want to eat this?”, respectively. Internal state ratings for hunger, fullness, thirst, anxiety, and 688 

need to urinate were made from “not at all [hungry/full/etc.]” to “more [hungry/full/etc.] than 689 

anything.” Subjective hunger was calculated as the difference of VAS ratings for hunger – 690 

fullness. Participants also practiced one odor run in a mock MRI simulator in the lab. 691 

Adiposity. Body weight was measured with an electronic scale and height with a digital 692 

stadiometer to calculate BMI. Bioelectric impedance analysis (Seca Medical Body Composition 693 

Analyzer mBCA 525, Hamburg, Germany) was used to obtain body fat percentage; values were 694 

divided by 21 for females and by 31 for males to adjust for sex. 695 
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Questionnaires. Participants completed the Vividness of Olfactory Imagery30 and 696 

Vividness of Visual Imagery17 Questionnaires (VOIQ/VVIQ) in which they imagined odors/visual 697 

objects across 16 scenarios and rated the vividness of their mental imagery from one “perfectly 698 

clear and as vivid as normal smell/vision” to five “no image at all – you only know you are 699 

thinking of an odor/object.” Both inventories were reverse scored such that higher sums 700 

reflected larger self-reported imagery ability. Participants also did a modified Vividness of Food 701 

Imagery Questionnaire (VFIQ)20 that was similar to the VOIQ but focused on the ability to 702 

imagine external food odors (e.g., of cookies in the oven) and flavors in the mouth (e.g., of 703 

eating cookies, which also rely on olfaction). Total weekly metabolic equivalent task-minutes 704 

(MET-minutes) from the International Physical Activity Questionnaire (IPAQ)131 and total score 705 

from an American version of the Dietary Fat and Free Sugar Short Questionnaire (DFS)118 were 706 

also used to assess habitual exercise and high-fat/high-carbohydrate intake, respectively. MET-707 

minutes for each type of physical activity represent the total minutes dedicated to the activity 708 

times the estimated energy expenditure during the activity as a multiple of resting energy 709 

expenditure (e.g., vigorous activities count toward a higher MET score than moderate activities). 710 

Perceptual Task of Odor Imagery Ability. Detection thresholds for the rose and cookie 711 

odors were first determined using a 16-step dilution series (4% odor by volume to 1.22ppm) in a 712 

2-alternative forced-choice staircase procedure132. In a within-subjects and counterbalanced 713 

design, participants then completed three imagery conditions (odor, visual, and none) of a 714 

validated perceptual task21. During odor and visual imagery, they were instructed to imagine the 715 

smell or sight of one odor type (e.g., rose) while trying to determine which of two samples 716 

“smelled stronger.” In matched trials, the two samples contained: (1) the same odor as the 717 

imagined type – e.g., rose – at their detection threshold level, and (2) the odorless propylene 718 

glycol diluent. In mismatched trials, the two samples were: (1) the incongruent odor – e.g., 719 

cookie, and (2) the odorless diluent. In the no imagery condition, odor detection trials were 720 

performed in the absence of imagery. The odor and visual imagery conditions contained 25 721 

matched and 25 mismatched trials per odor (100 total), and the no imagery condition consisted 722 

of 25 trials per odor (50 total), all counterbalanced for presentation order (i.e., sample one 723 

contained the odor in 50% of trials). The interference effect (perceptual measure of odor 724 

imagery ability) was calculated by subtracting detection accuracy (% trials correct) in 725 

mismatched trials from that in matched trials of the odor imagery condition.  726 

Food Cue Reactivity. Cue-induced craving strength was rated in response to 90 727 

palatable food pictures31 on a horizontal VAS from “I do not want it at all” to “I crave it more than 728 
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anything,” and the average was calculated. Items included familiar American snacks and meals, 729 

such as pizza and doughnuts. For cue-potentiated intake, participants completed a bogus taste 730 

test32 in which they were instructed to eat as much as they liked while comparing the sensory 731 

properties of two plates of cookies (e.g., which tastes sweeter/saltier, is fresher, or has better 732 

quality chocolate). They were not explicitly told that the cookies were identical and that the 733 

primary aim was to quantify the grams consumed. Data from two participants were excluded 734 

from this measure after eating more than 3 SD above the group mean. Following the food 735 

craving and intake paradigms, participants also rated their liking on the LHS33 and frequency of 736 

consumption in a typical month on a VAS (labels: 1 or less/month, 2/month, 3/month, 1/week, 737 

2/week, 3–4/week, 5–6/week, 1/day, 2 or more/day) for each stimulus.  738 

 739 

fMRI Session 740 

Participants underwent fMRI scanning while performing a task in an event-related design 741 

with six trial types: smell rose, cookie, or clean air; and imagine rose, cookie, or clean air. Each 742 

trial began with a 5s auditory cue of “smell” or “imagine” followed by the name of the odor (e.g., 743 

“rose”) and the countdown “three, two, one, sniff.” Odor/clean air delivery (3s) was time-locked 744 

to sniff onset. Trials were separated by intertrial intervals of 7–17s (mean = 10s). Participants 745 

completed 30 trials per run (five of each type) and five runs per scan. Runs were ~9min long 746 

and separated by ~2min breaks to minimize olfactory habituation.  747 

Stimuli were delivered at concentrations matching individual ratings of moderate 748 

intensity on the gLMS with a custom MRI-compatible olfactometer that has been described in 749 

detail previously133. In brief, the odors and clean air were presented via tubing channels and 750 

removed by a vacuum line connected to a NuancePro Gel Nasal Pillow Fit-Pack Model 751 

#1105167 nasal mask (Philips Respironics, Murrysville, PA, USA) worn by the subject. This 752 

mask was coupled to an anti-viral filter (item #28350, Vitalograph, Lenexa, KS, USA) followed 753 

by a pneumotachograph to measure airflow in the nose, which was then attached to a 754 

spirometer and amplified with PowerLab 4SP for digital recording at 100 Hz in LabChart version 755 

7 (ADInstruments, Sydney, Australia). Participants completed pre- and post-scan odor and 756 

internal state ratings in the MRI bore before and after scanning. These ratings were averaged 757 

and the differences of cookie versus rose intensity, familiarity, liking, and edibility were 758 

quantified (Extended Data Fig. 4).  759 

fMRI data were acquired with a Siemens 3 Tesla Magnetom Prisma scanner using a 32-760 

channel head coil. Images were collected at an angle of 30° off AC-PC to reduce susceptibility 761 
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artifacts in olfactory regions. Sagittal T1 anatomical images (repetition time TR = 1900ms, echo 762 

time TE = 2.52ms, 176 slices, field of view FOV = 250mm, voxel size = 1×1×1mm) and 763 

functional echo-planar images (EPIs) with a multiband BOLD sequence (TR = 2100ms, TE = 764 

40ms, 72 slices, flip angle = 85°, FOV = 192mm, voxel size = 1.5×1.5×1.5mm) were obtained.  765 

 766 

Follow-Up Session  767 

All but one participant returned to the lab approximately one year later (days elapsed 768 

from first to last session: M = 363.17, SD = 7.33, range = 340 – 378) to repeat the adiposity, 769 

questionnaire, and food cue reactivity measures. Follow-up data from one participant was 770 

excluded after they began a strict diet and lost more than 3 SD above the group mean in weight 771 

change from the baseline to follow-up sessions.  772 

 773 

Data Analyses 774 

Behavioral Analyses 775 

Pearson correlations, linear regressions, linear mixed effects models, ANOVAs, and 776 

Student’s t-tests were performed in MATLAB 2020a (Mathworks, Natick, Massachusetts, USA). 777 

Data were plotted in Prism version 9.4.1 (GraphPad Software, San Diego, CA, USA). Mediation 778 

and moderated mediation models were tested with bootstrapping (10000 samples, 95% CIs) 779 

using the “PROCESS” macro version 4.1134 models 4 and 7 implemented in SPSS Statistics 780 

version 28 (IBM, Chicago, IL, USA). Significant effects were supported by confidence intervals 781 

(CIs) excluding zero within the lower and upper bounds. For test-retest reliability, intraclass 782 

correlation coefficient estimates and 95% CIs were calculated in SPSS based on single 783 

measure, absolute agreement, 2-way mixed models. All measures showed moderate to good 784 

reliability (Supplementary Table 9). 785 

Sniff Analyses. The spirometer data were preprocessed and analyzed in MATLAB 786 

R2020a. The raw airflow traces were separated by scan run and preprocessed (temporally 787 

smoothed with a 500ms moving window, high-pass filtered at a cutoff of 0.02 Hz, and 788 

normalized by subtracting the mean and dividing by the SD). Sniff onset for each trial was 789 

determined by finding the time of the minimum signal value within a window of ± 0.75s from the 790 

auditory cue end. The time (latency) and value (amplitude) of the proximal maximum signal 791 

were identified. Sniff offset was defined as the time (duration) at which the signal returned to its 792 

original minimum, which was used in quantifying the area under the curve with the trapezoidal 793 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 8, 2023. ; https://doi.org/10.1101/2023.02.06.527292doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.06.527292
http://creativecommons.org/licenses/by-nc-nd/4.0/


 32 

method (volume). Finally, peak and mean airflow rates were assessed using derivatives at each 794 

signal point indicating the instantaneous rates of change. These parameters were averaged by 795 

trial type (e.g., smell rose) for each participant prior to comparison in ANOVAs (Extended Data 796 

Fig. 5 and Supplementary Table 2). 797 

 798 

fMRI Analyses 799 

Preprocessing. The fMRI data were preprocessed and analyzed using FSL version 800 

5.0.10 (FMRIB Software Library, Oxford, UK; Jenkinson et al., 2012) and SPM12 (Statistical 801 

Parametric Mapping, Wellcome Centre for Human Neuroimaging, London, UK) implemented in 802 

MATLAB R2019b. Functional EPIs were realigned to the mean and unwarped using fieldmaps, 803 

slice-time corrected, and motion-corrected with the FSL tool MCFLIRT136. The anatomical T1 804 

image was coregistered to the mean EPI and spatially normalized to the standard MNI 805 

reference with unified segmentation in SPM12. Prior to the univariate analyses, the resulting 806 

deformation fields were applied to the EPI images, which were then smoothed with a 3mm full-807 

width-half-maximum Gaussian kernel.  808 

First Level Models. General linear models (GLMs) were estimated for each participant 809 

and run, separately for the normalized and smoothed EPI data (for univariate analyses) and the 810 

non-normalized and non-smoothed EPI data (for decoding analyses). In each, the 6 trial types 811 

(smell rose/cookie/clean air and imagine rose/cookie/clean air) were modeled with a canonical 812 

hemodynamic response function as events of interest with onsets time-locked to the start of 813 

odor/clean air delivery and durations of 3s. The following nuisance regressors were also 814 

included: 24 motion parameters (the six SPM realignment parameters for the current volume, 815 

six for the preceding volume, plus each of these values squared137, the mean signal extracted 816 

from the ventricular cerebrospinal fluid computed with fslmeants, a matrix of motion-outlier 817 

volumes identified using fsl_motion_outliers (threshold = 75th percentile plus 2.5 times the 818 

interquartile range and/or greater than 1mm of framewise displacement138), and the 819 

preprocessed sniff trace down-sampled to the scanner temporal resolution with decimation. A 820 

128s high-pass filter was applied to remove low-frequency noise and slow signal drifts. 821 

Univariate Analyses. The following contrast images were created at the single-subject 822 

level and averaged across the five runs: smell odor (rose + cookie) > smell clean air, imagine 823 

odor > imagine clean air, imagine odor > smell clean air, smell odor > imagine odor, and 824 

imagine odor > smell odor. Group-level random effects analyses were conducted with one-825 
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sample t-tests thresholded at puncorrected < 0.001 and a cluster size of at least five contiguous 826 

voxels. Effects were considered significant at p < 0.05, cluster-level family-wise error corrected 827 

across the whole brain. We also regressed the perceptual measure of odor imagery ability (i.e., 828 

the interference effect) against whole-brain BOLD responses to imagining odors > imagining 829 

clean air and imagining odors > smelling clean air. Here we considered whole-brain effects and 830 

those significant in the piriform cortex at a peak-level of p < 0.025, family-wise error small-831 

volume corrected for multiple comparisons in our two regions of interest (see below) and 832 

subsequently Bonferroni corrected for the two SVC searches. The anatomical labels were 833 

determined jointly from the “Atlas of the Human Brain”139, an adult maximum probability atlas 834 

prepared with SPM12 (www.brain-development.org)140–142, and the Automated Anatomical 835 

Labeling Atlas 3143.  836 

Decoding Analyses. The ROIs for the decoding analyses included the left and right 837 

piriform cortices independently created from the Neurosynth144 meta-analytic functional map for 838 

the term “olfactory” (74 studies with 2021 activations, downloaded 9/15/2021). Activations from 839 

this map were restricted to a threshold of z = 6 to ensure separability of the piriform clusters 840 

from other nearby regions (e.g., the insula). The ROIs were converted from MNI space to each 841 

subject’s native EPI space (voxel size = 1.5×1.5×1.5mm), resulting in clusters of 190 and 111 842 

voxels for the left and right piriform, respectively.  843 

MVPA was performed using The Decoding Toolbox145 implemented in SPM12. For the 844 

first decoding method (SVM classification), separate voxel-wise patterns were created for 845 

smelling and imagining the rose and cookie odors by extracting the parameter estimates from 846 

the first level GLMs and subtracting the mean activity across the conditions in each run. Feature 847 

selection was used to identify the top class-discriminative voxels in each ROI with an ANOVA, 848 

restricted to the number of voxels in each ROI maximally available for all subjects. An SVM from 849 

the Library for Support Vector Machines (LIBSVM) package146 was trained to decode rose 850 

versus cookie using patterns of BOLD activation for smelling the odors in four of five scan runs. 851 

The SVM was then tested for its accuracy to predict these odor categories from the patterns in 852 

the left-out run. These steps were repeated for training and tested on the imagined odor 853 

patterns, and for training on smelled and testing on imagined (and vice versa, averaged for the 854 

crossmodal condition). SVM accuracies were compared to chance (50%) in one-sample t-tests 855 

to assess group-level significance. SVM accuracies for the decoding of real odors in the left 856 

versus right piriform cortex were also directly compared with a paired-samples t-test to assess 857 

the laterality of the effect. 858 
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 For the second decoding method (split-half voxel correlations), the first BOLD run was 859 

treated as an odor localizer, which resulted in an equivalent number of even and odd runs 860 

remaining for decoding (2 each). The voxels for each subject and ROI were functionally ranked 861 

according to their t values in the contrast of smelling odor > smelling clean air from the localizer. 862 

Again, the N-most odor-active voxels maximally available for all subjects were selected. The 863 

split-half voxel correlations were then analyzed for the within-odor (e.g., smelling rose in even 864 

runs versus smelling rose in odd runs) minus the between-odor (e.g., smelling rose in even runs 865 

versus smelling cookie in odd runs) fMRI patterns in each ROI. In line with our SVM analyses, 866 

we performed separate tests for real, imagined, and crossmodal odors. The resulting correlation 867 

values were Fisher’s Z transformed and compared to zero in one-sample t-tests to assess 868 

group-level significance. They were also tested in correlations against the perceptual and self-869 

report measures of odor imagery ability. The latter analyses were performed in all individuals (n 870 

= 44) and separately restricted to those with discriminable neural patterns for actual odors, 871 

defined as within-odor minus between-odor voxel correlation Z-values > 0 (n = 30). 872 

Testing the Neurobiological Craving Signature. The NCS is a recently developed 873 

neuromarker or brain signature34 of craving29 that predicts the intensity of drug and food craving 874 

with good accuracy. To assess the responses of the NCS-food pattern (a pattern that was 875 

trained on visual food cues only), we computed the matrix dot product between this NCS-food 876 

weight map and each participant’s L2-normed contrast images for the six conditions: smell 877 

cookie/rose/clean air and imagine cookie/rose/clean air. The matrix dot product provides one 878 

scalar value (a ‘pattern response’ value) per participant and contrast image that describes the 879 

similarity of the image to the weight map and the predicted level of food craving. Greater 880 

responses of the NCS-food weight map indicate greater similarity to the craving map and higher 881 

predicted levels of food craving. Pattern response values were statistically compared with an 882 

ANOVA and paired t-tests for planned comparisons. All weight maps and code to apply the NCS 883 

are publicly available at: 884 

https://github.com/canlab/Neuroimaging_Pattern_Masks/tree/master/Multivariate_signature_patt885 

erns/2022_Koban_NCS_Craving. 886 

 887 

DATA AVAILABILITY 888 

The raw MRI data and sniff airflow traces can be downloaded from the OpenNEURO repository 889 

under accession number ds004327: https://openneuro.org/datasets/ds004327. Statistical maps 890 

of the human brain will be made available on the NeuroVault repository. 891 
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EXTENDED DATA FIGURES 1255 

 1256 

Extended Data Fig. 1: Univariate fMRI Activity to Imagining Odors > Smelling Clean Air 1257 

(a) 3D coronal sections (18mm thick) evenly spanning y = 56 to –88mm depict significant BOLD responses to imagining odors > 1258 
smelling clean air in the bilateral insula, putamen extending into the piriform cortices, pallidum, and orbitofrontal, middle frontal, and 1259 
precentral gyri, among other regions. 1260 

(b) Important areas of activation for imagining odors > smelling clean air are highlighted with custom coordinates (see 1261 
Supplementary Table 4). 1262 

Brain sections show the SPM t-map (puncorrected < 0.005, clusters of at least 5 voxels) overlaid onto an anatomical template in MNI 1263 
coordinates for illustrative purposes. Color bars depict t values. L, left; R, right; Ins, insula; OFC, orbitofrontal cortex; Pir, piriform 1264 
cortex; Put, putamen. 1265 

  1266 

 1267 

Extended Data Fig. 2: Imagining a Food Odor Elicits Greater Neurobiological Craving Signature Activation 1268 
than Imagining a Nonfood Odor 1269 

(a) Mask constructed from the intersection of EPI scan windows for all participants (black) overlaid onto an anatomical template in 1270 
MNI coordinates to depict the fMRI signal coverage.  1271 

(b) The effects of smelling and imagining cookie and rose odors and clean air on pattern responses of the recently developed 1272 
Neurobiological Craving Signature (NCS) from independent work29. 1273 

S, smell; I, imagine; C, cookie; R, rose; L, clean air. Post-hoc comparisons: *p < 0.01, **p < 0.001, ***p < 0.0001. 1274 
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 1275 

Extended Data Fig. 3: Participant Flow Diagram 1276 

Flow diagram depicting the number of individuals at each stage of the study. 1277 
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 1278 

Extended Data Fig. 4: Odor Rating Comparisons for Rose Versus Cookie 1279 

(a–d) The cookie odor was rated to be significantly more intense (a), familiar (b), liked (c), and edible (d) than the rose odor. 1280 
However, the cookie minus rose odor ratings were not correlated with any measure of odor imagery ability (Supplementary Table 1). 1281 
Truncated violin plots depict single participants with shading to represent the density of the points around the median line. R, rose; 1282 
C, cookie; gLMS, general Labeled Magnitude Scale128–130; VAS, visual analog scale; LHS, Labeled Hedonic Scale33. *p < 0.05; **p < 1283 
0.01; ***p < 0.0001. 1284 

 1285 

 1286 

Extended Data Fig. 5: Sniff Parameters for Smelling and Imagining the Rose and Cookie Odors 1287 

(a–d) Normalized sniff traces (M ± SEM) for smelling the rose (a) and cookie (b) odors and imagining the rose (c) and cookie (d) 1288 
odors.  1289 

(e–j) Sniff amplitude (e), latency (f), volume (g), duration (h), peak airflow rate (i), and mean airflow rate (j) while smelling and 1290 
imagining the rose and cookie odors. Differences in the sniff parameters for imagining the cookie minus rose odor were not 1291 
correlated with any measure of odor imagery ability (Supplementary Table 1). ANOVAs also revealed no main effects or interactions 1292 
of modality (smell/imagine), odor (rose/cookie), or the perceptual measure of odor imagery ability (the interference effect) on any 1293 
sniff parameter (Supplementary Table 2).  1294 

Truncated violin plots depict single participants with shading to represent the density of the points around the median line. S, smell; 1295 
I, imagine; R, rose; C, cookie; a.u., arbitrary units. 1296 
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