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Computational approaches hold great promise for identifying novel treatment targets and creating translational therapeutics
for substance use disorders. From circuitries underlying decision-making to computationally derived neural markers of drug-
cue reactivity, this review is a summary of the approaches to data presented at our 2023 Society for Neuroscience Mini-
Symposium. Here, we highlight data- and hypothesis-driven computational approaches that recently afforded advancements
in addiction and learning neuroscience. First, we discuss the value of hypothesis-driven algorithmic modeling approaches,
which integrate behavioral, neural, and cognitive outputs to refine hypothesis testing. Then, we review the advantages of
data-driven dimensionality reduction and machine learning methods for uncovering novel predictor variables and elucidating
relationships in high-dimensional data. Overall, this review highlights recent breakthroughs in cognitive mapping, model-
based analysis of behavior/risky decision-making, patterns of drug taking, relapse, and neuromarker discovery, and showcases
the benefits of novel modeling techniques, across both preclinical and clinical data.

Introduction
Substance use disorder (SUD) is a chronic, relapsing brain dis-
ease characterized by continued drug use despite negative conse-
quences. To receive an SUD diagnosis (using Diagnostic and
Statistical Manual of Mental Disorders, Ed 5), individuals must
exhibit significant impairment or distress and meet at least 2 of
11 symptoms that fit within categories of impaired control, risky
drug use, social problems, and pharmacological effects, within a
12month period (American Psychological Association, 2013;
Suzuki and Kober, 2018). The 2021 National Survey on Drug
Use and Health reports that 46.3 million people in the United
States (12 years or older) met criteria for an SUD in the past year,
and 43.7 million were classified as needing SUD treatment
(Substance Abuse and Mental Health Services Administration,
2021, 2022). However, the multidimensional nature of this disor-
der complicates treatment. Despite decades of research, effective
treatments for substance use disorder remain elusive. Identifying
effective treatments requires collaboration between clinical and
preclinical research to facilitate a unified understanding of the
nature of SUDs. Targets identified by clinical neurobiological

research can be probed preclinically in tightly controlled experi-
ments to identify therapeutic potential (Venniro et al., 2020).
Identified treatments can then follow the translational pipeline
to test efficacy in humans.

In April 2013, the National Institute of Health launched the
BRAIN Initiative (Brain Research through Advancing Innovative
Neurotechnologies), with the goal of revolutionizing our present
understanding of the brain, and to advance treatments through
prioritizing support of the development of neurotechnologies
(National Institutes of Health, 2013). The need for management
of the rich data afforded by these approaches has increased expo-
nentially, a challenge requiring the use of data-driven and/or
theory- or model-driven computational tools (Yip and Konova,
2023). Data-driven tools can reduce dense, complex, and high-
dimensional datasets to digestible representations that uncover
underlying patterns. Theory-driven tools use functional or neu-
rocomputational hypotheses to guide the interpretation of con-
tained data collections in a process of falsification/validation
testing. The field of computational psychiatry has evolved to
approach data using hybrid models that incorporate both data-
and theory-driven analyses (Yip and Konova, 2023).

While computational approaches are not new to the study of
psychopathology in general (Wang and Krystal, 2014) and addic-
tion research in particular (Redish et al., 2008; Mollick and
Kober, 2020; R. Smith et al., 2021; Kato et al., 2023), they have
primarily been used to analyze behavioral data from human and
animal studies or as tools that offer interesting theoretical frame-
works, and have yet to have a significant impact on clinical
practice (Hitchcock et al., 2022; Karvelis et al., 2023). Human
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subjects research requires large sample sizes because of increased
variability arising from genetic and environmental heterogeneity.
When demographic and genetic information is considered in
statistical models, the number of independent variables necessi-
tates more complex data analysis approaches. Animal studies
have independent variables that are well controlled (e.g., age,
environment, strain, sex); thus, data analysis has historically been
approached using inferential statistics with few target-dependent
variables of interest. However, in recent years, advancement in
tools to assess neurobiology and increased emphasis on investi-
gating sex differences, polysubstance use, and SUD comorbidities
have resulted in complex datasets and a need for preclinical
researchers to consider additional statistical approaches. Overall,
the field of computational psychiatry is on the rise, and computa-
tional tools have the potential to elucidate the neurobiology of
motivated behavior and advance effective SUD treatment devel-
opment (Wang and Krystal, 2014; Adams et al., 2016; Huys et al.,
2016; Yip et al., 2022; Karvelis et al., 2023).

The current review showcases the approaches featured in
the 2023 Society for Neuroscience Mini-Symposium panel,
“Listening to the Data: Novel Computational Approaches to
Addiction and Reward Processing,” and is not intended to pro-
vide a comprehensive review of the field. First, we consider the
value of classic inferential statistics and their limitations. Then,
we discuss the impact of algorithmic, dimensionality reduction,
and machine learning approaches in the field to date, and dis-
cuss the advantages, challenges, and utility of these methods for
future research (Fig. 1).

Classic inferential approaches
Classical inferential statistics have been traditionally used for hy-
pothesis testing (e.g., x 2, t tests, ANOVAs) and/or to analyze

relationships between independent variables and one or more
dependent variables (e.g., regression analyses). These methods
are powerful, rigorous, and reliable when properly used, and
they have advanced our understanding of the neurobiology of
substance use. However, there are some limitations to their
use. Many of these methods assume data normality and inde-
pendence, which can be difficult to obtain in behavioral and
cognitive neuroscience (Allua and Thompson, 2009). Classic
inferential approaches are sensitive to outliers, and violations
of normality and independence assumptions create mislead-
ing and biased results (Amon and Holden, 2021). When out-
lier data are removed to meet assumptions, valuable and
representational data may be removed with it. Subjects of
greatest interest to addiction research may lie in the extremes
of resultant data (e.g., are higher drug-seekers). Additionally,
classic inferential statistics are challenged when multiple
hypotheses are tested at the same time, leading to increased
Type 1 errors (false positives) (P. F. Smith, 2017), and correc-
tions for multiplicity on large datasets can be problematic,
leading to overly limiting or powerful comparisons (Berry,
2007). Moreover, given that most hypotheses can only be
tested in terms of “X statistically different from Y,” these
approaches have difficulty capturing complex relationships
and interactions of pathogenic components that characterize
psychiatric disorders, including SUDs.

Computational approaches can address some of these chal-
lenges. They can facilitate the processing of large and diverse
datasets and provide model-based hypotheses to guide data
collection and analysis. They can be used to model behavioral,
cognitive, and neural processes; uncover new variables; detect
patterns; and integrate multiple data modalities. We suggest that
there are certain contexts in which computational methods may

Figure 1. Schematic representation of data- and theory-driven approaches to addiction and learning neuroscience data analysis that were reviewed here (italicized in purple). MDS = multi-
dimensional scaling, PCA = principal component analysis, LASSO-PCR = least absolute shrinkage and selection operator–principal component regression, RL = reinforcement learning, DDM =
drift diffusion modeling.
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yield more useful and valid results, and that these approaches
can supplement findings from classic methods to explore deeper
meaning in extracted data. In the following sections, we will
expand on a few notable examples, including the use of rein-
forcement learning algorithms, Bayesian inference, evidence
accumulation models, multidimensional scaling, and principal
component regression.

Algorithmic models
Here, we loosely use the term “algorithmic models” to describe
mathematical frameworks by which complex relationships
between neurobehavioral variables are formally stated in a set of
rules describing the expected impact that a variable’s state change
has on its related variables. Such algorithmic models have been
extensively used in addiction neuroscience (Redish et al., 2008;
Mollick and Kober, 2020; R. Smith et al., 2021; Kato et al., 2023).
These approaches allow us to disentangle and measure complex,
dynamic behavioral constructs that are otherwise ambiguous and
hard to quantify. Fitting behavioral (or neural) data to algorithms
allows for testing of specific quantitative hypotheses about the
structure of decision-making or cognitive processes and their
plasticity (e.g., because of learning or neuro-modulation), map-
ping precise psychological constructs to experimental results.
These algorithms provide generative value, informing future
work and analyses, and aiding the interpretation of extant data
(Tolomeo et al., 2021).

Algorithms based on reinforcement learning have already
advanced our understanding of maladaptive decision-making,
which is a hallmark of SUDs (Redish, 2004). Within this frame-
work, goal-directed decision-making requires the selection and exe-
cution of one behavior in response to stimuli, followed by appraisal
of that choice, and adjustment of future decisions given past out-
comes to obtain the optimal outcome. Computationally, goal-
directed behavior may be best represented by model-based rein-
forcement learning frameworks, while compulsive behavior may be
best represented by model-free frameworks (Dayan and Niv, 2008;
Daw et al., 2011; Montague et al., 2012; Dolan and Dayan, 2013;
Voon et al., 2017). This proposed model-based/model-free di-
chotomy is consistent with the theory proposed by Everitt and
Robbins (2016) that the transition from voluntary, recreational
(goal-directed) drug use to compulsive, habitual use underlies the
maladaptive decision-making pattern that characterizes SUD.

In a recent publication, Costa et al. (2023) created a novel
model-based reinforcement learning algorithm to characterize
the role of the lateral orbitofrontal cortex (lOFC) in learning, in
male rats. The authors inhibited the lOFC during the initial
training of two outcome-specific associations, and later tested
whether a cognitive map was properly formed in a reinforcer
devaluation probe. Classical inferential analyses suggested that
lOFC inactivation impaired model-based learning but revealed
little about the underlying cognitive mechanisms. Several rein-
forcement learning models were then fit to individual behavioral
responses, and this showed that it was unlikely that the lOFC
was responsible for deploying associative representations
during model-based task performance (one of the leading
hypotheses in the field), or for creating cognitive maps per se
(a competing interpretation). Instead, reinforcement learn-
ing algorithms revealed a circumscribed role of the lOFC in
creating outcome-specific maps, essentially determining the
resolution of learned associations. This detailed interpreta-
tion was only possible by comparing the fits and predictions
of precise algorithmic models. Critically, lOFC dysfunction and
the inability to properly form cognitive maps are thought to be

a key feature of SUDs (Schoenbaum et al., 2016); and being able
to dissociate subtle cognitive variables, as was done in this
study, is an important step toward understanding how changes
in brain function can lead to behavioral pathology.

Bayesian approaches are widely used in computational psy-
chiatry, both in the context of modeling human and animal cog-
nition (e.g., in estimations of precision/uncertainty in perception
and decision-making) (Diaconescu et al., 2014, 2017; Ma and
Jazayeri, 2014; Stephan and Mathys, 2014) and in Bayesian data
analysis of computational methods (Lee, 2011; Ahn et al., 2014;
Vandekerckhove et al., 2018; Lee et al., 2019). However, Bayesian
inference approaches are relatively new in SUD data analysis,
with distinct strengths compared with other methods (R. Smith
et al., 2021; Kato et al., 2023). Frequentist (non-Bayesian) models
underperform when accounting for enhanced habitual respond-
ing in drug users (Lim et al., 2019), or when reward-seeking
behaviors are not cue-induced (Kato et al., 2023). Bayesian infer-
ence models, in comparison, overcome these limitations by com-
puting an agent’s states, actions, and outcomes as probability
distributions (equivalent to priors and posteriors in Bayes’ theo-
rem). Priors update to posteriors based on a prediction error sig-
nal, which is hypothesized to be encoded by dopamine phasic
bursts, representing the discrepancy between one’s beliefs and
actual observations (Friston et al., 2012). Expanding on this line
of thought, Kato et al. (2023) proposed that Bayesian inference
models cannot only extend the explanatory potential of rein-
forcement learning theories, but also incorporate behavioral
addictions (i.e., gambling), which may not depend so heavily on the
reward/cost function. In contrast, reinforcement learning reward
prediction error-based theories heavily pivot on the reward value
because they assume that decision-making alterations are caused
by dopamine-related, drug-induced alterations determining the
reward/cost function instigating motivated behavior.

Evidence accumulation models, such as the drift diffusion
model (DDM), are another category of algorithmic models that
allow for analysis of the latent cognitive processes involved in de-
cision-making (Ratcliff, 1978; Myers et al., 2022). These models
can account for choices as well as shapes and locations of reac-
tion time data simultaneously, a feature that allows them to suc-
cessfully explain complex behavioral data from decision-making
tasks. Initially developed to explain simple, two-choice percep-
tual decisions in humans (Ratcliff, 1978), the DDM deconstructs
the decision-making process into key contributing factors: the
decision starting point, the information accumulation rate to-
ward an option, thresholds that determine the required quantity
of information before decision-making, and the contribution of
nondecision elements (e.g., sensory and motor processing) to
the total response time. Use of the DDM can reveal differen-
ces between groups in underlying cognitive processes, de-
spite behavioral profiles looking similar when analyzed using
traditional methods. DDMs have been successful in modeling
decision-making across numerous domains (both perceptual
and value-based), including in aging, child development, clini-
cal populations, and animal species (Ratcliff, 1978; Myers et al.,
2022). Further, correlates of the processes described by DDMs
have been validated through neural and brain activity measures
(e.g., electrophysiology, EEG, fMRI) (Gupta et al., 2021).

DDMs have been used to model the psychological and neuro-
biological processes in substance-related and addictive disorders
in humans. In comparing ex-nicotine smokers and current daily
smokers on a value-based decision-making task, drift diffusion
modeling revealed that ex-smokers were more cautious in making
value-based decisions about tobacco-related cues than current
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daily smokers (Copeland et al., 2023). To investigate the effect
of binge-drinking intoxication and hangover on response
selection, DDM and EEG were combined, revealing that acute
intoxication decreases information accumulation rates and short-
ens nondecision information encoding times which were related
to specific changes in EEG event-related potentials (Stock et al.,
2017). In gambling disorder, the use of DDM has linked reduced
decision thresholds (less cautious responding) with increased risky
choice and active gambling (Peters and D’Esposito, 2020; Peters et
al., 2020; Bruder et al., 2021).

Preclinical behavioral tasks commonly incorporate two-
choice decision-making components, which yield data that are
ideal for DDM analysis; however, DDMs are underutilized in
animal studies. DDM parameters represent common cognitive
processes (not necessarily task- or species-dependent) that are
comparable between paradigms. By using all choice data and the
full shape of the reaction time distributions for these choices,
rather than traditional metrics such as the mean and SD in classi-
cal inferential approaches, DDMs allow for the uncovering of
underlying decision-making processes that drive behavior.
DDMs can also be incorporated in reinforcement learning mod-
els as the decision rule for action selection in place of softmax
(Fontanesi et al., 2019), which allows for concurrent investiga-
tion of reward learning and decision-making. Increased applica-
tion of DDMs to rodent behavioral datasets may provide novel
insight into the underlying cognitive processes and neural sub-
strates that contribute to maladaptive decision-making in addic-
tions as well as improve interpretability and relevance of findings
from animal models of addiction to humans (Hales et al., 2023).

An implementation of the DDM that uses hierarchical Bayesian
methods to estimate model parameters, the hierarchical Bayesian
estimation of the drift diffusion model (HDDM) (Wiecki et al.,
2013), can simultaneously estimate individual values and group dis-
tributions while providing more precise parameter estimates. The
HDDM can be used to investigate how trial-by-trial measurements,
such as outcomes from fMRI, influence decision-making processes.
In preclinical settings, HDDM has the potential to better
model latent cognitive variables at play during multiple-choice
paradigms where an animal must decide whether to seek a
drug or a nondrug reward (food, social interaction, etc.)
(Ahmed et al., 2013). HDDM can readily detect dependencies
of latent parameters on different brain measures (Wiecki et
al., 2013), such as Ca21 influx dynamics, neuronal firing, or
neurotransmitter release, offering an unparalleled opportunity
to reveal novel abnormal cognitive processes underlying ex-
cessive drug reinforcement and subsequent displacement of
alternative rewards. As models evolve in sophistication and
require inclusion of numerous parameters, integration with
other types of methodologies, such as dimensionality reduc-
tion (discussed below), can be useful to help identify the key
features explaining behavior.

Dimensionality reduction approaches and machine learning
The neurobiology of SUD is inherently complex. SUDs are com-
monly comorbid with other psychiatric disorders (Udo and
Grilo, 2019; National Institute on Drug Abuse, 2020). Additional
consideration of genetic factors, environmental influences, poly-
substance use, sex differences, and individual variability yields
intricate datasets that are challenging to interpret. Dimensionality
reduction methods are valuable tools to reduce complexity while
retaining essential information. Two notable approaches to ana-
lyze this type of data, principal component analysis (PCA) and
MDS, are unsupervised machine learning algorithms that reduce

data dimensionality and noise, prevent overfitting, and increase
interpretability. As with reinforcement learning algorithms, the
use of dimensionality reduction is not new and has been previ-
ously applied in addiction research (Konu et al., 2001; Kramer et
al., 2010; Maremmani et al., 2017; Hoffmeister et al., 2019; Tan et
al., 2020; Dunn et al., 2023). While similar in goal, the methods
and approaches differ. MDS focuses on the correlational rela-
tionships between variables and maps them onto two-dimen-
sional space for visualization, while PCA transforms such
relationships into new variables, called principal components,
that capture the covariance in data (Hout et al., 2013; Jolliffe
and Cadima, 2016). The resulting principal components can
represent a hidden variable, not directly measurable in the ex-
perimental design, but patent in the set of interrelationships
found between the observations obtained. In this way, these
methods are valuable for exploratory and confirmatory data
analysis, pattern recognition, and to elucidate relationships
that were not yet apparent from the use of classical approaches
in addiction research.

Principal components identified by PCA can be applied as
new independent variables in classical inferential analyses, such as
linear regression. Linear regression is sensitive to multicollinearity,
departures from normality, and overfitting of multidimensional
data. Principal component regression (PCR) is a two-step process
by which new independent variables are first uncovered by PCA,
and then fit as regressors in a subsequent model. By first reducing
dimensionality through PCA, this approach alleviates issues of
multicollinearity and overfitting. Further, it transforms the data
into experimental outcomes predicted by underlying constructs or
processes, revealing relationships not directly observed through
experimental outcome measurements.

In a few notable examples from recent years, PCA has aided in
the characterization of precipitated withdrawal symptoms follow-
ing opioid antagonist or partial agonist administration (Dunn et
al., 2023) and helped identify common personality traits among
drug users for comorbidity theory development (Maremmani et
al., 2017). This method helped classify features of alcohol craving
unique to those with alcohol use disorder (Kramer et al., 2010),
discerned factors predictive of alcohol use disorder development
(Hoffmeister et al., 2019), and identified genetic-behavioral endo-
phenotypes underlying vulnerability to excessive drug-seeking
(Flagel et al., 2016; Slosky et al., 2022). PCA has also advanced our
understanding of addiction neurobiology in revealing the pro-
tective effect of luteolin (a flavonoid) reducing meth-induced
neurotoxicity is because of intricate changes in striatal PI3K/
AKT intracellular cascades in male rats (Tan et al., 2020).

Recently, Luján et al. (2023) used PCR to elucidate valuable
information from NAc fiber photometry readouts during co-
caine self-administration in mice. Cocaine-evoked dopamine
transients were recorded from male and female mice during
every drug interaction throughout self-administration, extinc-
tion, and cue-induced reinstatement. Both classical inferential
analysis (Pearson’s correlations) and PCR identified a signifi-
cant relationship between cue-evoked dopamine transients
and reinstatement. However, only PCR detected a relationship
between drug-evoked dopamine transients, characterized
by increases in dopamine fluorescence following intrave-
nous drug delivery, and relapse incidence, because of the
high dimensionality of the resultant data. Individual dopa-
mine measurements were first reduced by PCA to three low-
dimensional representations of drug-evoked dopamine reactivity,
accounting for 75% of all dopaminergic variance. Then, the princi-
pal components were applied as regressors to predict cue-induced
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reinstatement of cocaine-seeking. PCR revealed that the low-
dimensional representations of drug-evoked dopaminergic reac-
tivity accurately predicted reinstatement, accounting for 73% of
the observed variance (increased to 82% when considering sex). In
this case, a computational approach was better fit for the complex
data output than classical approaches. In the same study, varia-
tions in accumbal dopamine release were examined between male
and female mice. A conventional inferential approach (averaged
fluorescence amplitude Student’s t tests) identified numerous sex
differences, seemingly incongruent with the comparable levels of
relapse behavior in both sexes. By revisiting the low-dimensional
representation of dopamine responses from PCA, a shared pattern
of dopamine release was found, reconciling the neural and behav-
ioral findings. This highlights the potential utility of PCA in
revealing hidden patterns and associations within the data, which
may not be immediately apparent using traditional inferential
analyses alone.

Challenges to data analysis are presented when a dataset
contains a large number of predictors relative to a depend-
ent outcome with limited data points, or a low sample size.
The least absolute shrinkage and selection operator–principal
component regression (LASSO-PCR) algorithm was devel-
oped to overcome this challenge. LASSO-PCR is a multistep
machine learning approach similar to the PCR method men-
tioned above. First, PCA reduces dimensionality by identify-
ing principal components. The principal components are then
fit as regressors to a linear regression model with a LASSO
algorithm, which refines the prediction, aiding in variable
selection (Tibshirani, 1996). Using this method, Koban et al.
(2023) found that whole-brain activity evoked by visual cues
of drugs in adults with SUDs and their matched controls can
predict self-reported craving (p, 0.0002) as well as discrimi-
nate between drug users and nonusers with a high degree of
cross-validated accuracy (82%). After performing dimension-
ality reduction of brain-wide fMRI using data and identifying
brain networks characterized by high covariation of voxels
(PCR), the LASSO algorithm implemented a refinement to the
prediction (in this case, reported feelings of craving) by penal-
izing the contribution of less relevant principal components.
The analysis arising from LASSO-PCR permitted the determi-
nation of a Neurobiological Craving Signature, encompassing
cue-evoked brain activity patterns from the ventromedial
PFC, ventral striatum, supplementary motor area, and anterior
midcingulate cortex, as a reliable predictor of self-reported drug
craving and classifier of drug use status (Koban et al., 2023). This
work indicates the potential for the identification of objective diag-
nostic, prognostic, and predictive neural markers of drug craving
and relapse in humans (Food & Drug Administration-National
Institutes of Health Biomarker Working Group, 2016). To the best
of our knowledge, we are unaware of other applications of this
method in SUD research.

Compared with PCR approaches, MDS is less widely used in
addiction neuroscience. As mentioned above, MDS permits the
visualization of interrelationships of multiple variables of interest
in two-dimensional space. Commonly, an additional unsuper-
vised machine learning algorithm, K-means clustering, is used to
segment these visualized data into groups based on similarity,
with “K” representing the number of desired clusters. MDS used
with K-means clustering has revealed previously unseen relation-
ships between pain sensitivity and opioid reward in rodents
(Brice-Tutt et al., 2023).

Additionally, MDS has been used to uncover complex rela-
tionships between sex, alcohol and oxycodone co-use, and neural

activation in rats (Wilkinson et al., 2023). In this model, male
and female rats self-administered oxycodone for 3 h followed by
6 h access to two-bottle choice alcohol/water. Economic demand
for oxycodone was assessed, followed by reestablishment of base-
line consumption of one (oxycodone or alcohol) or both (oxyco-
done1alcohol) drugs, extinction, and cue-induced reinstatement
testing. Brains were processed and analyzed for mesolimbic c-fos
mRNA expression immediately following reinstatement. Classic
inferential statistics (ANOVA) revealed no differences in oxy-
codone demand parameters or c-fos expression between oxy-
codone-only and alcohol1oxycodone-consuming male rats.
However, MDS with K-clustering revealed dissimilarities in
recruited brain regions during cued reinstatement of oxyco-
done-seeking: c-fos in the BLA, NAc core, and shell, related to
reinstatement in oxycodone-only males, while c-fos in the
dorsal striatum and prelimbic cortex related to reinstatement
in male rats exposed to alcohol1oxycodone polysubstance use
(Wilkinson et al., 2023). These findings highlight the utility of
such approaches: while there may be no identifiable differen-
ces between groups (statistically equivalent in dependent vari-
able measures), the complex interaction of independent
variables (drug intake and frequency, brain regions recruited,
etc.) may be different between sexes and drug groups.

While many are exposed to substances, there is a wide vari-
ation of responses, with only a subset that develop an SUD.
Attempting to model this variability in preclinical models,
dimensionality reduction and clustering approaches are gain-
ing traction to identify vulnerable subpopulations of animals
that model this heterogeneity in clinical populations. Recently,
Jadhav et al. (2022) used a combined machine learning-assisted
clustering approach based on K-median (for cocaine) and K-
means (for alcohol) in combination with an artificial neural net-
works approach that allowed for reliable classification of vulner-
ability and resilience to addiction-like behavior in rodents across
cohorts. In a separate approach, Allen et al. (2021) combined
data- and theory-driven approaches in use of a Bayesian degree-
corrected stochastic block model (DCSBM) to identify resil-
ient, intermediate, and susceptible subpopulations to opioid
vulnerability.

In summary, unsupervised machine learning algorithms directed
at pattern recognition and component analysis are important tools
for uncovering patterns related to substance use in animals and
humans. Specifically, incorporating such approaches alongside,
or in combination with, classic inferential statistics enables the
identification of relationships not easily observed with traditional
methods alone.

In conclusion, in the field of addiction neuroscience, computa-
tional approaches are not yet widely adopted, potentially limiting
a comprehensive understanding of the neurobiology underlying
SUDs and hindering the identification of effective treatments.
Here, we highlighted several computational approaches to data
analysis that offer distinct advantages, and that will be featured at
our 2023 SFN Mini-Symposium. We reviewed the contexts in
which computational approaches yield more valid and translation-
ally relevant results than classic inferential approaches, such as
when data dimensionality or multicollinearity is high (MDS and
PCA), when datasets have a large number of predictors with a lim-
ited number of dependent measures or low sample sizes (LASSO-
PCR), and when cognitive mapping, learning, and decision-mak-
ing processes are involved (reinforcement learning, Bayesian infer-
ence, and DDM). These methods have revolutionized our
conception of addiction through use of objective, highly pre-
dictive neural diagnostic markers (Koban et al., 2023). They
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have identified drug addiction endophenotypes, valuable for
the future of precision treatments based on individual differ-
ences in animals (Fiore et al., 2018), and promoted theory de-
velopment on brain regions associated with the transition
from voluntary to compulsive drug use (Lucantonio et al.,
2014). It is our hope that the present review will encourage the
use of computational methods alongside existing approaches
to deepen our understanding of extant data, drive hypothesis
and framework development, and enable valuable predictions
toward advancing addiction neuroscience. By leveraging the
power and utility of computational approaches to reward and
addiction neuroscience data, the field can move closer toward
novel target identification and treatment development.
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